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Instructions

1. The exam consists of 5 exercises.

2. Check your exam documents for completeness (18 one-sided pages with 5 exercises).

3. You have 3 hours to solve the exercises.

4. You can solve the exercises in any order. You should not be worried if you cannot solve
all exercises. Not all points are required to get the best grade.

5. If you're unable to take the exam under regular conditions, immediately inform an assistant.

6. Pencils are not allowed. Pencil-written solutions will not be reviewed.

7. No auxiliary material is allowed. Electronic devices must be turned o� and should not be
on your desk. We will write the current time on the blackboard every 15 minutes.

8. Provide only one solution to each exercise. Please clearly mark/scratch the solutions that
should not be graded.

9. All solutions must be understandable and well-founded. Write down the important thoughts in

clear sentences and keywords. Unless stated otherwise, no points will be awarded for unfounded or

incomprehensible solutions.

10. You may use anything that has been introduced and proven in the lecture or in the exercise
sessions. You do not need to re-prove it, but you need to state it clearly and concretely.
However, if you need something di�erent than what we have shown, you must write a new
proof or at least list all necessary changes.

11. Write your student-ID (Legi-number) on all sheets (and your name only on this cover sheet).
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Exercise 1: Random Binary Search Tree (20 points)

Let n � 1. Consider a random binary search tree on the nodes {1, . . . , n} as de�ned
in the lecture. For every integer k with k � 1, let ∆(k)

n be the number of edges in the

tree for which the di�erence of the two endpoints is exactly k. Compute E
h
∆(k)
n

i
for all

n � 1, and all k � 1.
Hint: You may use that 1

(d+1)d(d−1)
= 1

2(d+1)
− 1

d
+ 1

2(d−1)
without proof.
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Exercise 2: Point Location (20 points)

You are given an arrangement of some polygons in the plane. Each polygon is given by a
list of its vertices, in order. Let n be the sum of the number of vertices of each polygon.
A line ` is said to be free, if it does not intersect (this includes touching) any polygon.

See the �gure below for an example arrangement where n = 14, with some lines which
are free (bold), and some lines which are not free (dashed).

Your task is to design a data structure which allows you to decide in O(logn) time
whether a non-vertical query line ` is free or not.

You should also describe how this data structure can be built. Analyze the preprocessing
time you need and the size of your data structure, but these do not have to be optimal.

To make the task easier, assume that no two polygons share a vertex, and any two edges
intersect in at most one point. Furthermore, assume that no edge of the input polygons
is vertical.
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Exercise 3: Linear Programming and Polytopes (20 points)

Let P be a set of n points in Rd in general position1.

Devise an algorithm that computes the vertices of the convex hull of P.

For the runtime of your algorithm, you may treat d as a constant. Let k be the (at
the beginning unknown) number of vertices of the convex hull of P (i.e., the number of
points in the output of your algorithm). Your algorithm may

• solve at most O(n) linear programs, with each linear program containing O(k)
constraints, and

• perform at most O(nk) additional arithmetic operations.

Hint: You may use (without proof) the following two facts holding for any set of
points P � Rd in general position:

• For any hyperplane H such that P is contained in one of the half-spaces bounded
by H, all points in H \ P are vertices of the convex hull of P.

• For any vertex p of the convex hull of P, there exists a hyperplane H 0 such that
P \H 0 = {p} and P is contained in one of the half-spaces bounded by H 0.

These facts are illustrated below:

H

H ′

1General position in Rd means that for all 1 � k < d, any a�ne subspace of dimension k contains at

most k+ 1 points.
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Exercise 4: Pfaffian Orientations (20 points)

For this exercise you may use that an orientation is Pfa�an if and only if every nice
cycle is oddly oriented.

(a) (6 points) Prove that every connected planar graph G on n � 3 vertices has at least
2n−1 distinct Pfa�an orientations.

(b) (7 points) Let G be a graph on the vertex set V . Let C be a subset of V . Now

consider a Pfa�an orientation ~G of G. Prove that the orientation obtained by
ipping in ~G all edges with one endpoint in C and one endpoint in V \ C is also a
Pfa�an orientation.

(c) (7 points) Prove that every connected graph G on n � 2 vertices which has at least
one Pfa�an orientation has at least 2n−1 distinct Pfa�an orientations.
You may use the result from (b) even if you did not prove it.
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Exercise 5: Parallel Algorithms (20 points)

Throughout this exercise, we consider the ARBITRARY CRCW PRAM model.

Let G be an undirected, unweighted and connected graph with n = |V(G)| vertices and
m = |E(G)| edges.

Recall that a DFS tree of G rooted at r is a spanning tree T of G, such that if we
root T towards r, then for every edge {u, v} 2 E(G), either u is an ancestor of v or v is an
ancestor of u. In other words, there does not exist an edge in G connecting two di�erent
branches of T . Note that there might exist more than one such DFS tree rooted at r.

We say that a subtree T 0 of G is a partial DFS tree rooted at r, if r 2 V(T 0) and T 0 can
be extended to a DFS tree rooted at r. That is, there exists a DFS tree T rooted at r
with E(T) � E(T 0).

For the exercises below, you can assume that there exists a parallel algorithm A 0 that
takes as input any undirected, unweighted and connected n-node m-edge graph G with
n � 2 as well as a root r, and computes a partial DFS tree T 0 rooted at r with the following
guarantee: each connected component of G[V \ V(T 0)] has at most n/2 vertices. A 0 has
work O(m) and depth O(

p
n).

(a) (10 points) Let T 0 be a partial DFS tree and let C be a connected component
in G[V \ V(T 0)]. We say that a node v 2 V(T 0) is neighboring the connected
component C if there exists an edge {u, v} 2 E(G) with u 2 C. We denote by
vC 2 V(T 0) the node of largest depth in T 0 neighboring C (the node vC is uniquely
de�ned, but you do not need to provide a proof for this).

Give a deterministic parallel algorithm that for any given partial DFS tree T 0 com-
putes for every connected component C of G[V \V(T 0)] the node vC in O(m log2 n)
work and O(log2 n) depth.

(b) (5 points) Give a recursive algorithm for computing a DFS tree rooted at a given
node r. You may use A 0 and an algorithm solving subtask (a), even if you did not
solve that subtask. You do not have to prove that your algorithm is correct.

(c) (5 points) Give an asymptotically tight bound for the work and depth of the algo-
rithm developed in the previous exercise.
You do not have to give a proof. Even if you do not provide the asymptotically
tight bound, you can earn partial points if you give a suitable recurrence relation
for both the work and depth.
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