
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms, Probability, and Computing Exercises KW39 HS23

General rules for solving exercises

� When handing in your solutions, please write your exercise group on the front
sheet:

Group A: Wed 14{16 CAB G 56

Group B: Wed 14{16 CAB G 57

Group C: Wed 16{18 CAB G 56

Group D: Wed 16{18 CAB G 57

� This is a theory course, which means: if an exercise does not explicitly say \you
do not need to prove your answer", then a formal proof is always required.

The following exercises will be discussed in the exercise classes on September 27, 2023.
Please hand in your solutions via Moodle, no later than 2 pm at September 26.

Exercise 1

Let G = (V, E) be a connected graph with weights w : E → R on the edges, and de�ne
the edge boundary of set S to be

∂(S) := {{u, v} 2 E : u 2 S, v 2 V \ S}.

Assume that for every non-empty vertex set S � V, the edge with the minimum weight
in ∂(S) is unique.

Prove that G has a unique MST. Conclude that if the weight function w is injective (i.e.,
no two edges have the same weight), G contains exactly one MST.

1

Exercise 2

You already know that for a connected graph G = (V, E), with n = |V | and m = |E|, the
expected running time of Randomized Minimum Spanning Tree Algorithm (G) (see
page 5 in the lecture notes) is equal to O(m).

(i) Prove that the worst-case running time of the algorithm is equal toO(min{n2,m logn}).

(ii) Prove that the running time of the algorithm is equal to O(m) with probability
1− o(1) in the following two steps.

(a) Let D(n,m) be the worst-case running time of the recursive algorithm without
considering the two recursive calls, and let T(n,m) be the worst-case running time
of the recursive algorithm. It is clear that D(n,m) = O(n + m), and by (i),
T(n,m) = O(min{n2,m logn}). Figure 1 represents a binary tree of running times
in which every �rst recursive call works on a graph with at most n

8
vertices and

at most 3
4
m edges, every second recursive call works on a graph with at n

8
vertices

and at most 3
8
n edges, and the worst-case function T(n2/5,∞) will be applied when

the number of vertices has shrunk down to n2/5.

Prove that there exists a constant c3 > 0 such that the sum of all running times in
the nodes of the tree depicted in Figure 1 is bounded from above by c3 � (n+m).

(b) Prove that for any connected input graph G, the running time of the algorithm
is dominated by the sum over all nodes in the tree depicted in Figure 1 with
probability 1− o(1) (i.e., a number that tends to 1 as n → ∞).

Hint: Let G1 and G2 be the two graphs for the �rst and second recursive calls,
respectively. Call G1 bad if G1 has more than n

8
vertices or more than 3

4
m

edges, and call G2 bad if G2 has more than n
8
vertices or 3

8
n edges. You might

apply the Cherno� bound to bound the probability that G1 or G2 is bad. For
the Cherno� bound, see the help sheet on the website of the course.

Exercise 3

For a graph G = (V, E), a cut is the partition of the vertex set V into two disjoint sets
V1 and V2 and the size of the cut is the number of edges between V1 and V2.

(i) Assume that |V | is even. We say a cut is balanced if |V1| = |V2| = |V |/2. Prove that
there always exists a balanced cut of size at least |E|/2.

Hint: Since you want to prove the existence, you might apply randomness.

(ii) De�ne dS(v) to be the number of neighbors of vertex v in a set S � V, i.e. dS(v) :=
|{u 2 S : {v, u} 2 E}|. Now, consider the following algorithm. Partition the vertex set
V into two arbitrary sets V1 and V2. As far as there is a vertex v 2 V1 (or v 2 V2) for
which dV1

(v) > dV2
(v) (resp. dV2

(v) > dV1
(v)) move v from V1 to V2 (resp. from V2 to

V1). Prove that this algorithm terminates and generates a cut of size at least |E|/2.

2

D(n,m)

D(1
8
n, 3

4
m)

D(1
82
n, 3

4
(3
4
m))

...

T(n2/5,∞)

...

T(n2/5,∞)

D(1
82
n, 3

82
n)

...

T(n2/5,∞)

...

T(n2/5,∞)

D(1
8
n, 3

8
n)

D(1
82
n, 3

4
(3
8
n))

...

T(n2/5,∞)

...

T(n2/5,∞)

D(1
82
n, 3

82
n)

...

T(n2/5,∞)

...

T(n2/5,∞)

Figure 1: A binary tree of very speci�c running times that we use in order to prove an
upper bound on the actually observed running time of the algorithm.

Exercise 4

In a city there are n houses h1, � � � , hn, each of which is in need of a water supply. It
costs ci to build a well at house hi, and it costs wij to build a pipe in between houses
hi and hj. A house can receive water if either there is a well built there or there is some
path of pipes to a house with a well. Give an algorithm to �nd the minimum cost to
supply every house with water.

Hint: There is a short solution.

3

