

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms	, Probability,	and Computing	Exercises KW39	HS23
------------	----------------	---------------	----------------	------

General rules for solving exercises

• When handing in your solutions, please write your exercise group on the front sheet:

Group A: Wed 14–16 CAB G 56 Group B: Wed 14–16 CAB G 57 Group C: Wed 16–18 CAB G 56 Group D: Wed 16–18 CAB G 57

• This is a theory course, which means: if an exercise does not explicitly say "you do not need to prove your answer", then a formal proof is **always** required.

The following exercises will be discussed in the exercise classes on September 27, 2023. Please hand in your solutions via Moodle, no later than 2 pm at September 26.

Exercise 1

Let G = (V, E) be a connected graph with weights $w : E \to R$ on the edges, and define the edge boundary of set S to be

$$\partial(S) := \{\{u, v\} \in E : u \in S, v \in V \setminus S\}.$$

Assume that for every non-empty vertex set $S \subset V$, the edge with the minimum weight in $\partial(S)$ is unique.

Prove that G has a unique MST. Conclude that if the weight function w is injective (i.e., no two edges have the same weight), G contains exactly one MST.

Exercise 2

You already know that for a connected graph G = (V, E), with n = |V| and m = |E|, the expected running time of *Randomized Minimum Spanning Tree Algorithm (G)* (see page 5 in the lecture notes) is equal to $\mathcal{O}(m)$.

(i) Prove that the worst-case running time of the algorithm is equal to $\mathcal{O}(\min\{n^2, m \log n\})$.

(ii) Prove that the running time of the algorithm is equal to O(m) with probability 1 - o(1) in the following two steps.

(a) Let D(n,m) be the worst-case running time of the recursive algorithm without considering the two recursive calls, and let T(n,m) be the worst-case running time of the recursive algorithm. It is clear that $D(n,m) = \mathcal{O}(n+m)$, and by (i), $T(n,m) = \mathcal{O}(\min\{n^2, m \log n\})$. Figure 1 represents a binary tree of running times in which every first recursive call works on a graph with at most $\frac{n}{8}$ vertices and at most $\frac{3}{4}m$ edges, every second recursive call works on a graph with at $\frac{n}{8}$ vertices and at most $\frac{3}{8}n$ edges, and the worst-case function $T(n^{2/5},\infty)$ will be applied when the number of vertices has shrunk down to $n^{2/5}$.

Prove that there exists a constant $c_3 > 0$ such that the sum of all running times in the nodes of the tree depicted in Figure 1 is bounded from above by $c_3 \cdot (n+m)$.

(b) Prove that for any connected input graph G, the running time of the algorithm is dominated by the sum over all nodes in the tree depicted in Figure 1 with probability 1 - o(1) (i.e., a number that tends to 1 as $n \to \infty$).

Hint: Let G_1 and G_2 be the two graphs for the first and second recursive calls, respectively. Call G_1 bad if G_1 has more than $\frac{n}{8}$ vertices or more than $\frac{3}{4}$ m edges, and call G_2 bad if G_2 has more than $\frac{n}{8}$ vertices or $\frac{3}{8}$ n edges. You might apply the Chernoff bound to bound the probability that G_1 or G_2 is bad. For the Chernoff bound, see the help sheet on the website of the course.

Exercise 3

For a graph G = (V, E), a cut is the partition of the vertex set V into two disjoint sets V_1 and V_2 and the size of the cut is the number of edges between V_1 and V_2 .

(i) Assume that |V| is even. We say a cut is balanced if $|V_1| = |V_2| = |V|/2$. Prove that there always exists a balanced cut of size at least |E|/2.

Hint: Since you want to prove the existence, you might apply randomness.

(ii) Define $d_S(\nu)$ to be the number of neighbors of vertex ν in a set $S \subseteq V$, i.e. $d_S(\nu) := |\{u \in S : \{\nu, u\} \in E\}|$. Now, consider the following algorithm. Partition the vertex set V into two arbitrary sets V_1 and V_2 . As far as there is a vertex $\nu \in V_1$ (or $\nu \in V_2$) for which $d_{V_1}(\nu) > d_{V_2}(\nu)$ (resp. $d_{V_2}(\nu) > d_{V_1}(\nu)$) move ν from V_1 to V_2 (resp. from V_2 to V_1). Prove that this algorithm terminates and generates a cut of size at least |E|/2.

Figure 1: A binary tree of very specific running times that we use in order to prove an upper bound on the actually observed running time of the algorithm.

Exercise 4

In a city there are n houses h_1, \dots, h_n , each of which is in need of a water supply. It costs c_i to build a well at house h_i , and it costs w_{ij} to build a pipe in between houses h_i and h_j . A house can receive water if either there is a well built there or there is some path of pipes to a house with a well. Give an algorithm to find the minimum cost to supply every house with water.

Hint: There is a short solution.