General rules for solving exercises

- When handing in your solutions, please write your exercise group on the front sheet:

Group A: Wed 14-16 CAB G 56
Group B: Wed 14-16 CAB G 57
Group C: Wed 16-18 CAB G 56
Group D: Wed 16-18 CAB G 57

- This is a theory course, which means: if an exercise does not explicitly say "you do not need to prove your answer", then a formal proof is always required.

The following exercises will be discussed in the exercise class on October 25, 2023. These are "in-class" exercises, which means that we do not expect you to solve them before the exercise session. Instead, your teaching assistant will solve them with you in class.

Exercise 1

We are given a set P of n points in R^{2} and a point q which has distinct distances to all points in P. We add the points of P in random order (starting with the empty set), and observe the nearest neighbor of q in the set of points inserted so far. What is the expected number of distinct nearest neighbors that appear during the process?

Exercise 2

Show that every linear program can also be converted into the following equational form:

$$
\text { maximize } c^{\top} x \text { subject to } A x=b, x \geq 0
$$

What is the maximum increase in the number of variables and in the number of constraints in such a transformation?

Exercise 3

Suppose we are given a set \mathcal{S} of n closed halfspaces in the plane. For each $\mathrm{H} \in \mathcal{S}$, let $\ell_{\mathrm{H}} \subset \mathrm{H}$ denote its boundary line. We assume that the halfspaces are in general position such that no two boundary lines are parallel and no three boundary lines meet in a single point. Consider the input to be given in the form of linear inequalities, say.

In this task we are interested in a randomized algorithm to decide whether the intersection of the given halfspaces is non-empty, that is whether $R(\mathcal{S})=\emptyset$ for $R(\mathcal{S}):=\bigcap_{H \in \mathcal{S}} H$, or not. If \mathcal{S} has a non-empty intersection, we would also be interested in a certificate point, that is in a point $x \in \bigcap_{H \in S} \mathrm{H}$ to demonstrate non-emptiness. To make your calculations simpler, we want to make certificate points unique. To this end, we assume $|\mathcal{S}| \geq 2$ and fix, arbitrarily, two halfspaces $\mathrm{H}_{1}, \mathrm{H}_{2}, \in \mathcal{S}$. The region $\mathrm{R}(\mathcal{S})$ is obviously contained in a wedge formed by the lines $\ell_{\mathrm{H}_{1}}$ and $\ell_{\mathrm{H}_{2}}$ (see figure). Before starting any algorithm, you may assume that the input is rotated ${ }^{1}$ first in such a way that this wedge opens to the right and the intersection point $g \in \ell_{\mathrm{H}_{1}} \cap \ell_{\mathrm{H}_{2}}$ acts as a guard that no point in $R(S)$ can have a smaller x-coordinate than g (see figure). We then define for any $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ with $\mathrm{H}_{1}, \mathrm{H}_{2} \in \mathcal{S}^{\prime}$ the unique certificate point $\mathrm{c}\left(\mathcal{S}^{\prime}\right)$ as the point in $\mathrm{R}\left(\mathcal{S}^{\prime}\right)$ that has the smallest x-coordinate. You may assume that H_{1} and H_{2} are fixed before and known to all your algorithms below.

Following are your tasks:
(a) Let $|\mathcal{S}| \geq 3$ (with H_{1} and H_{2} as described above) and let $\mathrm{H} \in \mathcal{S} \backslash\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$ be an arbitrary one of the halfspaces. Prove: if $R(\mathcal{S}) \neq \emptyset$, then either $c(S)=c(S \backslash\{H\})$ or $c(S) \in \ell_{H}$.
(b) Let $|\mathcal{S}| \geq 3$ (with H_{1} and H_{2} as described above) and let $\mathrm{H} \in \mathcal{S} \backslash\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$ be an arbitrary one of the halfspaces. Assume that $R(\mathcal{S} \backslash\{\mathrm{H}\}) \neq \emptyset$. Write down a deterministic algorithm that runs in time linear in $n=|\mathcal{S}|$ and that on input $(\mathcal{S}, \mathrm{H}, \mathrm{c}(\mathcal{S} \backslash\{\mathrm{H}\})$) determines whether $R(\mathcal{S}) \neq \emptyset$ and if so outputs $\mathrm{c}(\mathcal{S})$.
(c) Let again $|\mathcal{S}| \geq 3$ (with H_{1} and H_{2} as described above). Using (b), write down a randomized algorithm which, given \mathcal{S}, determines whether $R(\mathcal{S}) \neq \emptyset$ and if so outputs $\mathrm{c}(\mathcal{S})$. Your algorithm should run in expected time linear in $n=|\mathcal{S}|$.

[^0]
[^0]: ${ }^{1}$ this rotation can always be done such that we also do not have vertical or horizontal lines, which you may assume

