
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms, Probability, and Computing Solutions KW43 HS23

Solution 1

This is the classical use case for backward analysis. Instead of considering the points
as being inserted one by one and counting the number of nearest neighbors occurring,
we get the very same number if we start with the whole set Pn := P, and then for each
i = n− 1, n− 2, . . . , 1, obtain Pi from Pi+1 by removing a point p 2 Pi chosen uniformly
at random.

De�ne Xi to be the nearest neighbor of q in Pi. We are interested in the random variable
X := |{Xi|i 2 {1..n}}|. To this end we just calculate the probability xi = Pr [Xi 6= Xi+1] for
1 � i � n− 1. Clearly, then,

E[X] = 1+
n−1∑
i=1

xi.

We now note that Xi 6= Xi+1 occurs if and only if Pi = Pi+1 \ {Xi+1}. This yields that

xi = Pr [Xi 6= Xi+1] = Pr
�
Pi = Pi+1 \ {Xi+1}

�
=

1

i+ 1
,

where the second equality follows from the fact that Pi is generated from Pi+1 by re-
moving a point uniformly at random. As a very important remark: please note that
this simple argument only works because no matter what Pi+1 is, Pi is always generated
by removing one of its elements uniformly at random and the random variable Xi is
completely determined by Pi (what the currently nearest point is does not depend on the
insertion history). You have to verify this before you apply a backward analysis of this
type.

Finally,

E[X] = 1+
n−1∑
i=1

xi = Hn.

Solution 2

Given a linear program in standard form1,

maximize cTx subject to Ax � b, (LP 1)

1You might want to revise at this point how to convert any linear program into standard form (section
6.1 of the lecture notes).

1

where A 2 Rm�n, c 2 Rn and b 2 Rm, we can convert it into equational form as follows:
First we replace the \�" by a ‘‘ = 00 by the following trick.

maximize cTx subject to Ax+ ε = b, ε � 0 (LP 2)

where ε = (ε1, . . . , εm) is a vector of m new variables. In a second step we get rid of
unconstrained (= possibly negative) variables. To this end we replace each xi by x 0

i−x 00

i ,
where x 0

i, x
00

i are two new nonnegative variables:

maximize cT(x 0 − x 00) subject to A(x 0 − x 00) + ε = b, x 0 � 0, x 00 � 0, ε � 0. (LP 3)

Now we write this LP in such a way that it is undoubtedly in equational form, e. g. like
this:

maximize

0
BB@

c

−c

0

1
CCA

T 0
BB@
x 0

x 00

ε

1
CCA subject to

�
A −A Im

�
0
BB@
x 0

x 00

ε

1
CCA = b,

0
BB@
x 0

x 00

ε

1
CCA � 0. (LP 4)

In what sense have we \converted" the LP into equational form? We make the following
notes.

� If x is a feasible solution of (LP 1), then a corresponding feasible solution of (LP 4)
is given by

x 0 = (max{x1, 0}, . . . ,max{xn, 0}),

x 00 = −(min{x1, 0}, . . . ,min{xn, 0}),

ε = b−Ax.

Furthermore this feasible solution to (LP 4) has the same objective value as x.

� Correspondingly, if (x 0, x 00, ε) is a feasible solution of (LP 4), then x 0 − x 00 is a
feasible solution of (LP 1) with the same objective value.

Complexity: The linear program (LP 4) has 2n+m variables and 2n+ 2m constraints,
where the original (LP 1) had n variables and m constraints.

Solution 3

(a) Suppose R(S) 6= ;. Clearly, this implies that R(S \ {H}) 6= ;. Therefore and since
H1, H2 2 S \ {H}, both x := c(S) and x 0 := c(S \ {H}) are well-de�ned points. Now
there are two cases. Either x 0 2 H or x 0 62 H.

Suppose x 0 2 H. In that case, we readily have x 0 2 R(S). And since x 0 was the
point of smallest x-coordinate in R(S \ {H}) � R(S), it will a fortiori be the point
of smallest x-coordinate in R(S). Therefore x 0 = x in that case.

Now suppose x 0 62 H. In that case, we have x 0 62 R(S). Now consider the line
segment s connecting x 0 and x. Since x 2 H but x 0 62 H, s must cross `H at

2

an intersection point p. Moreover, since x 0, x 2 R(S \ {H}) and since R(S \ {H})
is a convex set, the whole line segment s runs inside R(S \ {H}). Since p 2 H

by construction, it follows p 2 R(S). Clearly, x 0 must have a strictly smaller x-
coordinate than x, otherwise x would have been a possible choice for c(S \ {H}) in
the �rst place. Therefore, going further away from x 0 along s than p would only
make x-coordinates larger, from which we conclude p = x and thus x 2 `H.

(b) For any halfplane G 2 S \{H}, let us say that G points right (with respect to H) if
the intersection of G and `H is a ray that extends in�nitely to the right. Similarly,
let us say that G points left (with respect to H) if the intersection of G and `H
is a ray that extends in�nitely to the left. There is no third option because we
assumed not to have vertical or parallel lines.

We can now proceed in the following way:

SolveInc. Input: S, H, x 0 = c(S \ {H}).

(1) Check whether x 0 2 H. If so, return x 0.

(2) Else, initialize the (point) variables hl := (−∞, 0) and hr := (+∞, 0).

(3) Now for all G 2 S \ {H}, do:

(3.1) Let y be the intersection point of the lines `G and `H

(3.2) If G points right and y has larger x-coordinate than hl, update hl := y

(3.3) If G points left and y has smaller x-coordinate than hr, update hr := y

(4) If hl has strictly larger x-coordinate than hr, return 'empty', else return hl.

That the running time is linear is trivial.

Now we argue for correctness. Suppose R(S) 6= ;. Since the conditions of (a) are
then satis�ed, we know that c(S) is either equal to x 0 or on `H. In the �rst case,
the algorithm returns on line (1). In the second case, the algorithm maintains two
boundary points hl and hr such that on `H, exactly the points between hl and hr

are admissible. Since we know c(S) 2 `H and c(S) 2 R(S), we must have c(S) = hl

because this is the point of smallest x-coordinate within that set.

On the other hand if R(S) = ;, then we must end up in the situation that hl

lies right of hr as otherwise hl, for instance, would be contained in all halfspaces
contrary to the assumption.

(c) Consider the following algorithm.

Solve. Input: S

(1) If S = {H1, H2}, return g as the certi�cate.

(2) Else, select H 2 S \ {H1, H2} uniformly at random.

(3) Recursively call Solve(S \ {H}).

(4) If the result is 'empty', return 'empty'

3

(5) Else, if the result is a point x 0, call 'SolveInc(S, H, x 0) and return the result.

The base case is clearly �ne. General correctness then follows by induction from
the correctness of SolveInc.

The more di�cult part will be to determine the running time. At �rst sight, it
looks like this algorithm might require quadratic time; after all, we are calling
SolveInc linearly many times and we know that SolveInc uses up to linear time in
the worst case. The crucial observation is that SolveInc, on input (S, H, c(S \ {H})),
requires linear time only if c(S) 6= c(S \{H}). If on the other hand those certi�cates
are equal, then SolveInc can return on line (1) and takes only constant time to
terminate.

Let us �rst only consider sets S such that R(S) 6= ;. Let tn be expected running
time for n = |S | such halfplanes. We have t2 = O(1). Now for n � 3, tn is bounded
according to the above observation as

tn � tn−1 + Pr
�
c(S) 6= c(S \ {H})

�
� O(n) + Pr

�
c(S) = c(S \ {H})

�
� O(1).

But what is the probability Pr
�
c(S) 6= c(S \ {H})

�
? According to (a), this can

happen only if `H 3 c(S). But since H is chosen uniformly at random from all
halfplanes (except for H1, H2) and since c(S) cannot lie on any more than two
boundary lines, the probability that this happens is bounded by 2

n−2
. We therefore

obtain that

tn � tn−1 +
2

n− 2
� O(n) +O(1) = tn−1 +O(1).

From this it readily follows that tn = O(n) as desired.

The only thing we have left to do is to consider the case when the result will be
'empty'. However, consider that as soon as a recursive step returns 'empty', all
higher recursion levels return in constant time. So the transition from a certi�cate
point to the result 'empty' happens at most once in the course of the algorithm.
Before that, the bound we just derived applies. Therefore the total time is no
bigger than linear in that case either.

4

