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Solution 1

As in the lecture notes we use slack variables to get system (1) from the exercise de-
scription into form (S1):

maximize cT(x1 − x2)
subject to A(x1 − x2) � b

x1, x2 � 0
(S1)
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(S2)

Using the de�nition of the dual we get that the dual of (S2) is

minimize bTy

subject to (A,−A)Ty �
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y � 0.

(S3)

The claim follows since

(A,−A)Ty �

 
c

−c

!

is equivalent to ATy = c.
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Solution 2

1. Neither (P) nor (D) has a feasible solution: An example for this �rst case can be
seen directly below. We observe that neither linear program is feasible because
in (P) the constraint x1 � −1 contradicts non-negativity of x1, and in (D) the
constraint −y2 � 1 contradicts non-negativity of y2.

(P): Maximize x1 + x2 (D): Minimize − y1 − y2

subject to x1, x2 � 0 subject to y1, y2 � 0

x1 � −1 y1 � 1

−x2 � −1 −y2 � 1

2. (P) is unbounded and (D) has no feasible solution: An example for this second
case can again be seen below. We observe that (P) is indeed unbounded because
we can put x1 := 1 and, at the same time, make x2 arbitrarily large, which makes
also the objective function arbitrarily large. On the other hand, (D) is infeasible
because the constraint −y2 � 1 directly contradicts non-negativity of y2.

(P): Maximize x1 + x2 (D): Minimize y1 − y2

subject to x1, x2 � 0 subject to y1, y2 � 0

x1 � 1 y1 + y2 � 1

x1 − x2 � −1 −y2 � 1

3. (P) has no feasible solution and (D) is unbounded: For this case we simply reverse
the roles of the two linear programs from the previous case. Note that in the
process we change the names of the variables and we multiply the constraints and
objective functions by −1 in order to stay true to the schema from the lecture
notes.

(P): Maximize − x1 + x2 (D): Minimize − y1 − y2

subject to x1, x2 � 0 subject to y1, y2 � 0

−x1 − x2 � −1 −y1 � −1

x2 � −1 −y1 + y2 � 1

4. Both (P) and (D) have a feasible solution: Depicted below is a linear program
(P) and its dual (D). On one hand, x� = (1, 2) is a feasible solution of (P) with
objective value 1 + 2 = 3. On the other hand, y� = (0.5, 0.5) is a feasible solution
of (D) with objective value 4 � 0.5 + 2 � 0.5 = 3. So, clearly, both (P) and (D) are
feasible. Additionally, since the objective values of x� and y� are identical, weak
duality tells us that x� and y� must in fact be optimal solutions of the respective
linear programs.

(P): Maximize x1 + x2 (D): Minimize 4y1 + 2y2

subject to x1, x2 � 0 subject to y1, y2 � 0

2x1 + x2 � 4 2y1 � 1

x2 � 2 y1 + y2 � 1
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Solution 3

Suppose we are given a linear program L that asks us to maximize the objective function
cTx where c 6= 0. Minimization problems can be dealt with analogously, and problems
with c = 0 can be solved with one single call to an algorithm that solves the feasibility
problem (because any feasible solution is also an optimal solution).

As we will see, with binary search we will not manage to �nd an optimal solution, but
we can get arbitrarily close. So, suppose x� is an optimal solution to the given linear
program L with objective value OPT := cTx�. Our goal is to �nd an approximate solution
~x that satis�es OPT − cT~x � ε, where ε > 0 is an arbitrary but �xed error term.

In order to perform binary search, we need to initialize and maintain upper and lower
bounds on the optimum objective value OPT . For this we will need Theorem 4.2, which
says that there exists an optimal solution, let us call it x� without loss of generality, that
is contained in the cube [−K,K]n with K � 2O(hLi).

It is an easy task to �nd the vertex xmax (resp., xmin) of the cube [−K,+K]n which
maximizes cTxmax (resp., minimizes cTxmin). Indeed, the sign of any coordinate of c
corresponds to the sign of the corresponding coordinate of xmax. Also, clearly, xmin =
−xmax. Since, as we said earlier, x� is contained in [−K,K]n we get that α := cTxmax and
β := cTxmin are upper and lower bounds, respectively, for OPT .

Now we can perform binary search for OPT . That is, we let γ := 1
2
(α + β) and we add

the constraint cTx � γ to L. We check whether the new program is still feasible. If it is,
then we update the lower bound β := γ. If it is not, then we remove the new constraint
again and we update the upper bound α := γ. In any case, the size of the interval [β,α]
that contains OPT halves in every step of the search. Therefore, the number of steps
until we reach α− β � ε (and therefore also our goal OPT − β � ε) is at most

log2
cTxmax − cTxmin

ε
= log2(2

O(hLi)) − log2(ε) = O(hLi),

for any �xed ε > 0.

Solution 4

We recall from linear algebra that a matrix R 2 Rn�n is a rotation matrix if and only
if RT = R−1 (in other words, the columns of R form an orthonormal basis of Rn) and
if detR = 1 (if detR = −1 then what we have instead is a rotation combined with a
reection). So, let v1, . . . , vn 2 Rn be any set of normalized and pairwise orthogonal
vectors with v1 = v. Then, R := (v1, . . . , vn) 2 Rn�n is a rotation matrix which obviously
satis�es Re1 = v1 = v, provided that detR = 1. If detR = −1 then we simply replace the
vector vn, say, with −vn.
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