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Solution 1

First, we check with one call to the oracle whether the given system of linear inequalities
has a solution. If the answer is NO then we stop and also output NO. If the answer is YES
then we proceed as follows.

(a) If there are only equations in the system, then this just means that we have a
system Ax = b of linear equations, for which we can �nd a solution in polynomial
time by Gauss elimination.1 So, in this case we need no additional calls to the
oracle.

(b) If there is at least one inequality, say ax � b, then we replace it by ax = b.
If the new, more constrained, system still has a solution (which can be checked
with one additional call to the oracle), then we can recursively �nd a solution
to the original system by �nding a solution to the more constrained system. If
the new, more constrained, system turns out to have no solution, then we drop
the constraint ax � b completely to obtain a smaller system, which again can be
solved recursively. This is a sound strategy because replacing a constraint ax � b
with ax = b can turn a feasible problem into an infeasible one if and only if the
hyperplane corresponding to ax � b is not part of the boundary of the feasible
region (in other words, it is redundant).

Since we need one initial call to the oracle, and exactly one call per inequality that we
get rid of (either by replacing it with an equality or by dropping it completely), the total
number of calls to the oracle will be m+ 1, where m is the number of inequalities in the
original system.

Solution 2

(i) \⇒": Assume that G is connected, and let S � V, ; 6= S 6= V. Then (S, V \ S) is a
partition of V into two nonempty subsets. The set δ(S) consists exactly of those
edges that have one endpoint in S and the other one in V \S. If this set were empty
then G would be disconnected (because there could be no path from any vertex in
S to any vertex in V \ S).

1When the computation has to be done exactly, naive implementations of Gauss elimination can lead to

an exponential blow-up of the encoding size of intermediate results. However, there are more clever

implementations which do not have this problem and which do run in polynomial time.
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\⇐": Let us write \condition (�)" for the condition δ(S) 6= ; for all S � V,
; 6= S 6= V. Assume that G satis�es condition (�). Let v 2 V. We want to show
that there is a path from v to every other vertex. To this end let Cv denote the
connected component of v in G. Applying condition (�) to Cv, there are only
three possibilities: (1) There is an edge from Cv to V \Cv; but this contradicts the
de�nition of a connected component. (2) Cv = ;; but this contradicts v 2 Cv. (3)
Cv = V, q.e.d.

(ii) Let G be the Petersen graph. It is known that G is non-Hamiltonian, so that the
Subtour LP cannot have an integer solution. It is also known (or obvious) that G
is 3-connected as well as 3-regular. From this it follows that setting ce = 2/3 for
all edges e gives a feasible solution to the Subtour LP.

(If you have not seen the Petersen graph before, a websearch will give you many
pictures of it. It happens to be one of the smallest non-Hamiltonian graphs out
there, which should explain why we use it for this question.)

(iii) Let x be a feasible point and assume that there is η 2 E with xη > 1. Write
η = {u, v} (the two endpoints of the bad edge). The �rst contraint of our LP
reads

∑
e2δ(v) xe =

∑
e2δ(u) xe = 2. In other words,

∑
e2δ({u,v}) xe = 4 − 2xη < 2, a

contradiction to the second constraint applied to S := {u, v}. (In the last step we
have used the assumption |V | > 3, which guarantees S 6= V.)

Solution 3

Let S = {s1, . . . , sn}, and let the numbering be chosen in such a way that minx2S c
Tx =

cTs1. Let y 2 conv(S). By de�nition of the convex hull there is λ 2 Rn such that λ � 0,
1Tnλ = 1 and y =

∑n
i=1 λisi. We �nd

cTy =
n∑
i=1

λic
Tsi �

n∑
i=1

λic
Ts1 =

�
min
x2S

cTx

� n∑
i=1

λi = min
x2S

cTx.

Since y 2 conv(S) was arbitrary, we obtain

min
y2conv(S)

cTy � min
x2S

cTx

and \�" clearly holds anyways.
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