
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms, Probability, and Computing Special Assignment 1 HS23

• Write an exposition of your solution using a computer, where we strongly recommend to
use LATEX. We do not grade hand-written solutions.

• You need to submit your solution via Moodle until November 1st by 2 pm. Late solutions
will not be graded.

• For geometric drawings that can easily be integrated into LATEX documents, we recom-
mend the drawing editor IPE, retrievable at http://ipe.otfried.org in source code
and as an executable for Windows.

• Write short, simple, and precise sentences.

• This is a theory course, which means: if an exercise does not explicitly say \you do not
need to prove your answer" or \justify intuitively", then a formal proof is always required.
You can of course refer in your solutions to the lecture notes and to the exercises, if a
result you need has already been proved there.

• We would like to stress that the ETH Disciplinary Code applies to this special assignment
as it constitutes part of your �nal grade. The only exception we make to the Code is
that we encourage you to verbally discuss the tasks with your colleagues. However, you
need to write down the names of all your collaborators at the beginning of the writeup.
It is strictly prohibited to share any (hand)written or electronic (partial) solutions with
any of your colleagues. We are obligated to inform the Rector of any violations of the
Code.

• There will be two special assignments this semester. Both of them will be graded and
the average grade will contribute 20% to your �nal grade.

• As with all exercises, the material of the special assignments is relevant for the (midterm
and �nal) exams.

1

http://ipe.otfried.org


Exercise 1 40 points

(Weighted Minimum Cut)
The aim of this exercise is to prove that the MinCut algorithm that we have seen in the lecture
can �nd the minimum cut in a weighted graph.

Given a (multi)-graph G = (V, E) with n vertices and m (multi-)edges and with weights
w : E 7→ R on the multi-edges, de�ne the weight of a cut C � E as w(C) =

∑
e2Cw(e). A

minimum weighted cut is a cut with minimum weight. For simplicity we denote the weight
of the minimum weighted cut in G as µ(G).

Consider the algorithm WeightedMinCut(G) reported below. The line \collapse parallel
edges of G", substitutes all the set of parallel edges e1, e2, . . . , ei between two vertices u and
v with only one edge between (u, v) with weight w(e1) +w(e2) + � � � +w(ei). Note that this
operation turns the weighted (multi)graph into a weighted graph.

(a) Consider the contraction of a random multi-edge e 2 E(G) with probability w(e)∑
i2E(G) w(i) .

Prove that probability of µ(G) = µ(G/e) for a randomly chosen edge e E(G) is at least
1 − 2/n. Deduce that the algorithm WeightedMinCut(G) is correct, i.e. with high
probability the cut returned is the minimum cut. Note that µ(G/e) may contain multi-
edges even if G does not.

(b) Suppose to have access to a black-box method SampleEdge(G) that returns a random

multi-edge e 2 E(G) with probability w(e)∑
i2E(G) w(i) . Argue thatWeightedRandomContract(G, t)

can be implemented using O(n) calls to SampleEdge(G).

(c) Suppose that W = poly(n) and that you can sample a number from {1, 2, . . . , poly(n)}
in O(1) time. Assume initially that m = O(n2) (there is at most a quadratic number
of multi-edges). We want to design the method SampleEdge(G) that given the weight
w(e) 2 {1, 2, . . . ,W} for each edge e allow you to sample from the weighted distribution.

• Design a data structure that can be built in O(m) time and O(m) space and al-
lows you to sample from the set of all the edges E = {1, 2, . . . ,m} with probability

we∑
i2E w(i) where wi 2 {1, 2, . . . ,W} in O(logm) time.

• Now suppose that some of the edges have been removed and others have been

collapsed. Let S � E, such that
∑

i2Sw(i) �
∑

i2E w(i)

2 , be the set of edges that
have not been remove and T � 2S be a partition of S. Devise a way to use sample

a set t 2 T with probability
∑

j2t w(j)∑
i2S w(i) using a constant number of calls to the data

structure from the previous point in expectation. (You can assume given a i 2 S

you can get the set t 2 T that contains i in constant time.)

• Explain why, building O(logn) instances of the data structure you developed in
expectation, you can get an implementation SampleEdge(G) needed in point (b)
with an amortized query time of O(logn). (The amortized query time is the sum
of the time needed by the queries made during the execution of WeightedMinCut

divided by the number of queries.)

2



(d) Let ϵ > 0. Now suppose that you have access WeightedMinCut but you can only use
it for graphs with weights in the range {1, 2, . . . , d10n/ϵe}.
Let G be a graph with weights in the range {1, 2, . . . ,W}. Design an algorithm that uses
at most log(nW) call to WeightedMinCut and �nds a cut C of graph G such that
w(C) � (1+ ϵ)µ(G).

WeightedRandomContract(G, t):
While V(G) > t do

Sample e 2 E(G) with probability
w(e)∑

i2E(G) w(i)

G← G/e
End while

collapse parallel edges of G
Return G

WeightedMinCut(G, k):
If n � 16 then

Compute µ(G) deterministically

Return µ(G)
else

t← dn/p2e+ 1
H1 ←WeightedRandomContract(G, t)
H2 ←WeightedRandomContract(G, t)
Return

min(WeightedMinCut(H1, k),WeightedMinCut(H2, k))

Answer to Exercise 1

(a) Let w(E(G)) =
∑

e2E(G)w(e). The degree of each vertex is at least µ(G) so w(E(G)) �
nµ(G)

2 . So, the probability that we contract an edge not in the min-cut is at least

1−
µ(G)

w(E(G))
� 1−

2

n
.

Once we know this, all the remaining part of the analysis is identical.

(b) At each iteration of the \while" loop in WheightedRandomContract we call Sam-
pleEdge in order to sample a random edge that we then contract. After the contraction
of one edge, the number of vertices in the graph decreases by 1. As a consequence, we
have to sample at most n edges and therefore, we only need a linear number of calls to
SampleEdge.

(c) • We create an array V where each entry V [i] contains the quantity
∑

j�iw(j). In order
to sample a random edge, we generate a random number x in {1, 2, . . . ,

∑n
i=1w(i)},

we perform a binary search to locate the index ℓ of the array such that V [ℓ − 1] �
x � V [ℓ] (Suppose that V [−1] = 0), and �nally, we return ℓ.

• We keep sampling edges from the distribution with all the edges using the data
structure just described. When we sample an edge e 2 S, we return the set t 2 T

that contains e. Since
∑

i2Sw(i) �
∑

i2E w(i)

2 , in expectation, we have to sample 2
edges from the distribution with all the edges to get a sample from the distribution
with the removed/collapsed edges.

• We create the the data structure we developed in the �rst point and we use the
technique we developed in the second point to sample the edges from the distribu-
tion we need after we removed or collapsed some of the edges. When the condition∑

i2Sw(i) �
∑

i2E w(i)

2 fails, we start from scratch and build a new array that con-
tains only the edges that have not been removed. Since the we do this operation
only when the total weight of the edges has been halved, we do this operation at

3



most log2(n) times.
Now we need to compute the total cost for all the calls to SampleEdge made by
WeightedMinCut divided by the number of time SampleEdge get called. We
distinguish two types of costs, there is the cost due to the binary search that is
performed at each call and then the cost needed to build (and rebuild) the array.
The cost due to the binary search never more than log(n) for each call. For the
other term, in expectation we are more likely to sample high weight edges earlier
so the weight is more likely to be halved before the number of edges is. Thus we
need to build at most one array (in expectation) of size m, at most 2 arrays of size
m/2, 4 arrays of size m/4 and so on until we have 2O(logm) arrays of constant size.
The total cost is then O(m log(m)) = O(m log(n)) that has to be divided by O(m)
number of calls.

(d) Note that we will need weights in the range {1, 2, . . . , d10m/ϵe} for the following solution.

Suppose that we know the value of µ(G) up to a constant factor. For example suppose
that we know that Q/10 � µ(G) � Q. At this point, we contract all the edges e in G

with w(e) > Q without changing the min-cut. Then, we approximate the weights in G

with the weight function

w 0(e) = d
w(e)

Q

10m

ϵ
e,

(Note that w 0 takes values in {1, . . . , 10m/ϵ}) and compute the min-cut of G with the
weights w 0 and obtain the value µ 0. Now we have that

µ(G) �
Qϵ

10m
µ 0 � µ(G) +

Qϵ

10
� (1+ ϵ)µ(G).

Finally, we know that 1 � µ(G) � nW so we can try the valuesU = 1, 10, 100, . . . , 10dlog10(nW)e.

.

4



Exercise 2 20 points

(Nodes at distance 3 in Random search trees)

Let n 2 N. Denote with W(n, d) the expected number of nodes of depth d in a random search
tree for n keys.

(a) Compute W(n, 0) and W(n, 1) for n � 1.

(b) Let d � 2. Write W(n, d) as a function of W(n− 1, d) and W(n− 1, d− 1).

(c) Prove that

W(n, 2) =

{
0 n 2 {1, 2},

4− 4Hn−1

n − 4
n n > 2.

Answer to Exercise 2

(a) The root is the only node of depth 0, so W(n, 0) = 1.
When n = 1, there are no nodes of depth 1. When n > 1, we have one node of depth
1, if the root has rank 1 or n and two nodes in all the other cases. Since the root is
uniformly distributed, it has rank 1 or n with probability 2/n. In conclusion,

W(n, 1) =

{
0 n = 1,
2n−2
n n > 1.

(b) Let with w(n, d) be the number of nodes of depth d in a tree. First, we condition on
the rank of the root of the tree,
W(n, d) = E

�
w(n, d)

�
=
∑n−1

i=0 E
�
w(n, d)|the root has rank i+ 1

�
Pr[the root has rank i+ 1] =

1
n

∑n−1
i=0 E

�
w(n, d)|the root has rank i+ 1

�
.

Once we know the rank of the root, the number of nodes of depth d is equal to the sum
of the nodes of depth d− 1 in the left and right sub-trees. Hence,

W(n, d) =
1

n

n−1∑
i=0

�
W(i, d− 1) +W(n− i− 1, d− 1)

�
.

Then for n > 1, we consider the quantity nW(n, d) − (n− 1)W(n− 1, d) and after some
algebraic manipulations we obtain

W(n, d) =
n− 1

n
W(n− 1, d) +

2

n
W(n− 1, d− 1).

(c) Firstly, for n � 2, we have W(n, 2) = 0, since we can't have a node of depth 2 with less
than 3 nodes. For n � 3, we compute the base case W(3, 2) = 2

3 and we note that it
satis�es the expression given. Finally, for n > 3 we substitute the expression into the
recurrence relation of point (b),

W(n, 2) =
n− 1

n
W(n− 1, 2) +

2

n
W(n− 1, 1).

5



=
n− 1

n
4
(n− 1) −Hn−2 − 1

n− 1
+

2

n
2
(n− 1) − 1

n− 1

= 4
n−Hn−1 − 1

n
.

Since the recurrence relation is satis�ed, the expression must be correct.

6



Exercise 3 20 points

(Ancestor with biggest rank)

Recall that a node u is an ancestor of node v in a rooted tree if u lies on the unique path
from v to the root on the tree. Note that v is an ancestor of itself. Furthermore, given two
nodes u, v in a tree there is a unique path that connects these two nodes, we call the number
of edges in this path the distance between u and v. Given a random search tree T , compute
the expectation of the sum of the distances from each point to its ancestor with the biggest
rank.

Answer to Exercise 3

The root node is the ancestor with the biggest rank for all nodes in the subtree rooted in its
left child and none of the nodes in the subtree rooted in its right child. This means, for the
left subtree the sum of the distances correspond to the sum of the depths of each node and for
the right subtree we can compute it recursively. The root node is also its own ancestor with
the biggest rank, which corresponds to a distance of 0. Denote with fn the quantity we want
to compute. f1 = 0, f2 = 1/2. For n � 2,

fn =
1

n

n−1∑
i=0

(hi + i+ fn−i−1)

Where hn is the overall depth of a node in a random search tree with n entries. From the

script we know that hn =
∑

i=1 nD
(i)
n = 2(n + 1)Hn − 4n. Compute nfn − (n − 1)fn−1 and

get

fn − fn−1 = 2Hn−1 − 3
n− 1

n
.

Finally, sum up all the terms to get the �nal result,

fn = f1 +
n∑
i=2

(fi − fi−1) = 3Hn + 2

n−1∑
i=1

Hi − 3n = (2n+ 3)Hn − 5n.

7



Exercise 4 20 points

(Nearest point or segment in the square)
We call a tiling of the unit square [0, 1]� [0, 1] a partition of the square into convex polygons
such that the interiors of no two polygons intersect and the union of all the polygons covers
the entire surface of the square.
You are given a tiling of the unit square together with a collection of points inside the square.
Suppose that the tiling is given by collection of all the edges of the polygons and let n be
the sum of the number of edges in the tiling and the number of points given. Design a data
structure that given a query point p 2 [0, 1]� [0, 1], returns the closest point or segment.
In order to get full score, your data structure should take O(n) space and expected O(logn)
query time, while the preprocessing time has to be polynomial in n. You can assume that the
points and the lines supporting all edges are in general position.

Answer to Exercise 4

Since n is the number of points and segments, there will be at most n points and n segments.
We build two independent structures for �nding the closest point and the closest line and then
we return the closest one.
For the points, we can simply use the trapezoidal decomposition to store the Voronoi diagram;
with every segment of the Voronoi diagram we associate the point of the Voronoi cell below
that segment. Since the Voronoi diagram consists of O(n) segments, the data structure takes
O(n) space, the query time to �nd the closest point is O(logn) in expectation, and can be
built in polynomial time.
For the segments, we build a trapezoidal decomposition to store the Voronoi diagram of the
edges. Fix a segment e and look at one polygon P of the two polygons of the tiling that contain
e. The part of the Voronoi cell of e contained in P is delimited by parts of the bisectors of
the angles de�ned by the line that contains e and a line that contains another edge of P. This
implies that the cells of the diagram are polygons and that each cell has at most n edges. In
order to get the O(n) bound on the size, this bound is not su�cient and we have to prove that
the Voronoi diagram contains at most O(n) edges. We do this following the same reasoning
we used in the lectures for the Voronoi diagram of a set of points: Consider the dual of the
graph given by the Voronoi Diagram, this has O(n) vertices (one for each segment) and, since
it is a planar graph, at most O(n) edges. The number of edges in the Voronoi diagram is
exactly the same as the number of edges in the dual graph so the number of vertices, edges,
and cells in the diagram is O(n) and we can store it using the trapezoidal decomposition. This
data structure also takes O(n) space, the query time to �nd the closest point is O(logn) in
expectation. It is clear that the Voronoi diagram and the trapezoidal decomposition can be
built in polynomial time.

8


