
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms, Probability, and Computing Special Assignment 2 HS23

• Write your solutions using a computer, where we strongly recommend to use LATEX. We

do not grade hand-written solutions.

• The solution is due on December 5th, 2023 by 2 pm. Please submit one �le per exercise
on Moodle.

• For geometric drawings that can easily be integrated into LATEX documents, we rec-
ommend the drawing editor IPE, retrievable at http://ipe.otfried.org or through
various package managers.

• Write short, simple, and precise sentences.

• This is a theory course, which means: if an exercise does not explicitly say \you do not
need to prove your answer" or \justify intuitively", then a formal proof is always required.
You can of course refer in your solutions to the lecture notes and to the exercises, if a
result you need has already been proved there.

• We would like to stress that the ETH Disciplinary Code applies to this special assignment
as it constitutes part of your �nal grade. The only exception we make to the Code is
that we encourage you to verbally discuss the tasks with your colleagues. However, you
need to include a list of all of your collaborators in each of your submissions. It is strictly
prohibited to share any (hand)written or electronic (partial) solutions with any of your
colleagues. We are obligated to inform the Rector of any violations of the Code.

• There will be two special assignments this semester. Both of them will be graded and
the average grade will contribute 20% to your �nal grade.

• As with all exercises, the material of the special assignments is relevant for the (midterm
and �nal) exams.

1

http://ipe.otfried.org

Exercise 1 10 points

(Flow in bipartite graph)
Let G = (V, E) be bipartite graph where V = S [T , |S| = n, and |T | = m. Furthermore let
s : S 7→ R�0, d : T 7→ R�0 be positive functions.

All the edges e = (u, v) in G have one endpoint in S and one endpoint in T and G represents
a network that connect nodes i 2 S with the nodes j 2 T . Suppose that each node i 2 S

comes with a quantity s(i) of available resources and each node j 2 T comes with a demand
of resources d(j). We want to �gure out whether there is a way to route the resources from
the nodes in S to the nodes in T that the satis�es the demand. For simplicity, we make the
assumption that

∑
i s(i) =

∑
j d(j), i.e. the total quantity of resources available matches the

total demand.

Create variable xij for each edge (i, j) 2 E and consider the following linear program.

max
∑
e2E

0 xe

such that: ∑
j

xij � s(i), 8i 2 S;

∑
i

xij � d(j), 8j 2 T ;

xi,j � 0

(a) Prove that there is a way to match the resources to the demands if and only if the linear
program is feasible.

(b) Write the dual of the linear program above.

(c) Prove that the �rst linear program has a solution if and only if the following condition
holds. For each Q � S, ∑

i2Q

s(i) �
∑

j:9(i,j)2E,i2Q

d(j)

and for every Q � T , ∑
j2Q

d(j) �
∑

i:9(i,j)2E,j2Q

s(i)

.

Hint: look at Theorem 4.6 from the lecture notes.

Answer to Exercise 1

2

(a) Suppose that the LP is feasible, then there exists a solution {xij} that satisfy all the
constraints. We send a quantity xe of resources on each edges e of the graph. The �rst
constraint guarantees that for each node i 2 S the amount of resources leaving that node
is at most s(i). The second constraint guarantees that each node j 2 T obtain at least
d(j) resources.
Conversely, suppose that there exists a way to route the resources in the network that
satis�es the requirements. Assign to the variable xij the amount of resources that are
sent from node i 2 S to node j 2 T . Then, {xij} is a feasible solution to the LP, hence
the LP is feasible.

(b) Let pi, qj for i 2 S and j 2 T be the dual variables. The dual program is:

min
∑
i2S

pis(i) −
∑
j2T

qjd(j)

such that:
pi − qj � 0, 8(i, j) 2 E.

pi � 0

qj � 0

(c) Let K =
∑

i s(i) =
∑

j d(j). First, suppose that one of the condition are not met, for

example there exists i 2 S such that
∑

j:(i,j)2E) d(j) < s(i). Fix M 2 R�0 and consider
the assignment

pi =

{
0 i = i,

M, i 6= i;

qj =

{
0, (i, j) 2 E,

M, (i, j) /2 E.

This is a feasible solution of the dual program and the objective function is∑
i2S

pid(i) −
∑
j2T

qjs(j) = (K− s(i))M− (K−
∑

j:(i,j)2E)

d(j))M = (
∑

j:(i,j)2E

d(j) − s(i))M

If we now let M→ + inf we see that the dual program is unbounded.
If instead, we have that there exists j such that

∑
i:(i,j)2E s(i) � d(j), an analogous

conclusion can be obtained by looking at the assignment

pi =

{
M, (i, j) 2 E),

0, (i, j) /2 E;

qj =

{
M, j = j,

0, j 6= j.

Finally, Theorem 4.6 from the lecture notes states that since the dual program is un-
bounded, the primal program cannot be feasible.

3

On the other hand, suppose that the condition are satis�ed. Then, we claim that the
assignment pi = 0, for all i 2 S and qj = 0 for all j 2 T is the optimal solution of the dual
program . We apply again Theorem 4.6 from the lecture notes that states that since the
dual program is feasible and bounded, the primal program has a (optimal) solution with
cost 0 (not surprisingly). We now prove that the claimed assignment is indeed optimal.
To do so, assume that you are being given an assignment that is optimal but has qj 6= 0

for some j. Otherwise, we can clearly set all pi = 0 to obtain an optimal solution. But
then let Q � T be the set of j 2 T with qj > 0. Let ϵ be the smallest value among them,
and let N(Q) denote their neighbors in S. Then, we remove ϵ from all qj for j 2 Q and
all pi for i 2 N(Q). Clearly, this is still a feasible solution since every non-zero qj got
reduced by ϵ. But by the second condition, the objective value of this solution is at least
as good as the original one. Now, we iterate this argument until all qj are 0.

4

Exercise 2 25 points

(Grading scheduling)

The APC exam consists of n exercises, and the course has m teaching assistants that partake
in grading. Based on their skills, each TA i takes tij hours to grade exercise number j. We
aim to grade all the exercises in the least time possible such that feedback can be provided in
a timely manner1. In other words, let xij an indicator variable that attains value 1 if exercise
i get assigned to TA j and zero otherwise. Then we want to minimize maxj

∑
i xijtij.

Consider the following integer program2.

min T∑
i

xij � 1, 8j

T �
∑
j

xijtij, 8i

xij 2 {0, 1}, 8i, j
(a) Argue that the integer program �nds the optimal assignment of exercises to TAs.

(b) Relax the program above to an LP (substitute xij 2 {0, 1} with xij 2 [0, 1]) and prove that
the integrality gap of the program above is at least m. In other words, �nd an example
of ti,j so that the ratio between the best solution of the integer program above and the
relaxed program is at least m.

We now modify the algorithm to get a much better integral solution via an intricate rounding
scheme. Let ~t be a �xed value and consider the relaxation of the LP as in (b) above with the
extra constraint that

xij = 0, if tij > ~t

for some threshold value ~t. When ~t is chosen appropriately, this captures the intuition that
questions should not be allocated to TAs that know very little about the topic.

(c) Show that the LP is feasible for some value ~t = tij.

Now, suppose that this new problem is feasible for some ~t and and let x be an optimal but
fractional solution x with cost T(~t). We want to show that it is possible to round x into an
integral solution of cost at most T(~t) + ~t.

We let qi = d∑j xije. This intuitively corresponds to some educated guess of the number
questions TA i is supposed to grade. To allocate questions to TAs, we build a bipartite graph
with TAs on the left side, and questions on the right side. TA i appears qi times on the left
side, which encodes that they can be given up to qi questions to grade. We refer to the copies
of TA i as i1, . . . iqi . Each question just appears once and we will refer to its vertex as j.

1For simplicity, we assume that each exercise is only graded by one TA.
2A integer program is a linear program with the additional constraint that the solution has to be integral.

This turns out to be a very powerful modi�cation, that allows encoding NP hard problems, too.

5

Next, we de�ne a tricky set of indices. We let πi(j) denote the index of the question TA i

is j-th slowest at grading. To illustrate this de�nition, consider the following example with 3

questions where TA i takes two hours to grade question 1 (pi1 = 2), three hours for question 2

(pi2 = 3) and just one hour for question 3 (pi3 = 1). Then πi(1) = 2, πi(2) = 1 and πi(3) = 3.

We then de�ne a bipartite graph by adding the following edges for each TA i.

1. Initialize c← 1, j← 1, r← 1 and w← xiπi(1).

2. While (j � n):

• If w � r, add an edge of weight xiπi(j) from exercise πi(j) to TA ic if xiπi(j) 6= 0.
Update r← r−w, j← j+ 1 and w← xiπi(j) (with the newly updated j).

• Else, add an edge of weight xiπi(j) from exercise πi(j) to TA ic if xiπi(j) 6= 0. Update
w← w− r, r← 1 and c← c+ 1.

Finally, we construct an unweighted bipartite graph by taking all edges of the weighted bipar-
tite graph we built.

(d) Prove that c is bounded by qi when running the above algorithm for TA i, i.e. we don't
attempt to add an edge to a copy of a TA that doesn't exist.

(e) Show that the unweighted bipartite graph built contains a matching with n edges.

Take a matching with n edges in the unweighted bipartite graph we built.

(f) Prove that the matching returned corresponds to an integral solution with value T(~t)+~t
where T(~t) is the fractional solution obtained with threshold ~t.

(g) Let OPT be the cost of the optimal solution of the integer program, i.e. the time required
for the grading with the optimal assignment. Describe a polynomial time algorithm that
�nds an assignment of the exercise to TAs such that the exam can be graded in time at
most 2OPT.
Hint: How do you choose ~t?

Some useful facts.

Definition 1. Given a graph G = (V, E), a fractional matching of G is a function z : E 7→ [0, 1]
such that ∑

e3i

z(e) � 1

for all i 2 V. The size of the fractional matching is
∑

e2E z(e).

Fact 2. Every bipartite graph is a stable graph, i.e. the size of the biggest fractional

matching in a bipartite graph is an integer and equals the size of the biggest matching

in the graph.

Answer to Exercise 2

6

(a) Because of the integrality constraint, the variables xij are indeed indicator variables.
Then, we notice that all the possible assignments of the exercises to the TAs, are a
feasible solution to the problem, i.e. the indicator variables satisfy all the constraints.
On the other hand, the �rst set of constraints ensure that each exercise gets assigned
to some TA so, each solution of the integral program constitutes a correct assignment
of the exercises. Finally, minimizing T minimizes this maximum timespan for each TA,
this proves that the optimal solution of the integral program is also an optimal solution
to our problem.

(b) Assume that there is just one exercise, but there are m teaching assistants that all take
one hour to grade it. Then, the best possible integral solution achieves time T = 1,
whereas the best fractional solution achieves time 1/m.

(c) Fix an optimal integral assignment of cost OPT . We prove a stronger version, namely, ~t
is a value of tij and ~t can be set as small as the largest ti,j whose x

⋆
i,j 6= 0. Notice that we

can use a the optimal assignment in order to construct a feasible solution of the relaxed
LP of cost OPT .

(d) Follows from the de�nition of qi and the algorithm for constructing the bipartite graph.
Note that even though we might connect an exercise node with 2 TA copies, we use the
variable r to keep track of the remaining capacity of the current TA copy until it reaches
saturation, and the variable w to store the fraction of the current exercise we have not
yet allocated.

(e) WLOG assume that x is an optimal solution such that all constraints of the type
∑

i xij �
1 hold with equality (note that there always exists one). Basically, while constructing
the bipartite graph we split x conceptually into a fractional matching z for the graph
(not with the actual assigned weights, but with the help of the variables r and w). This
fractional matching has size

∑
j(
∑

ik:(ik,j) exists
z((ik, j))) =

∑
j(
∑

i xij) =
∑

j 1 = n (which
is the biggest fractional matching in the graph). By Fact 2, we conclude that the graph
contains a matching of size n.

(f) Fix some TA i; he/she will grade the qi exercises assigned to the nodes i1, . . . , iqi . Denote
with Tc the slowest processing time of a job assigned to ic. Then the time required will be
at most

∑qi

c=1 Tc. Recall that since x is a solution of the linear program with the previously
assumed property, we know that

∑
j xij = 1 and

∑
j xijtij � T(~t). Furthermore we have

that ic has correcting times ti,j � Tc+1. So we can bound
∑qi

c=2 Tc �
∑

j xijtij � T(~t) with
the help of the previously de�ned fractional matching z and the fact that all TA copies
(except maybe iqi) are saturated in the matching. We left out the exercise assigned to
iq but T1 � maxiji xi,j � ~t.

(g) Run the algorithm for each ~t = tij. If the LP is feasible, build the bipartite graph, �nd
the matching and store the solution given by the matching. If the LP is not feasible, set
~t to the next value and keep going. In the end, return the best approximation found.
As we proved in (c), the algorithm will �nd a feasible program for ~t � OPT. Finally,
from (f), the cost of the solution returned will be at most ~t+ T(~t) � 2OPT .

7

Exercise 3 20 points

(Random orientation)

Let G = (V, E) be a graph and let
−→
G be a graph obtained by orienting the edges of G indepen-

dently with probability 1/2 in either direction. Given
−→
G , de�ne the skew symmetric matrix

As such that

As(i, j) =

+1, (i, j) 2 E with orientation from i to j,

−1, (i, j) 2 E with orientation from j to i,

0, otherwise.

(a) Let pm(G) denotes the number of perfect matchings in G, prove that

E
h
detAs(

−→
G)
i
= pm(G).

Hint: Use the de�nition of determinant and the linearity of expectation.

(b) Given two perfect matchings M1,M2 of G, denote with a(M1,M2) the number of cycles
in G made of (alternating) edges contained in M1 and M2 (or equivalently the cycles in
M1 xor M2), and denote with M the set of all perfect matchings in G. Prove that

E

��
detAs(

−→
G)
�2�

=
∑

M12M

∑
M22M

3a(M1,M2).

Hint: You may �nd inspiration in the proof of Theorem 5.3. First deal with permutations

whose directed graph uses edges that do not appear in G. Next argue about the contribution

from permutations where this graph contains at least one cycle of odd length, and �nally

the rest.

(c) Let

var
h
detAs(

−→
G i)

i
= E

��
detAs(

−→
G)
�2�

−

�
E
h
detAs(

−→
G)
i�2

.

Design a randomized algorithm that computes the determinant of at most N = 2 var
h
detAs(

−→
G i)

i
matrices, runs in O(N poly(|V |)) time, and returns x such that

Pr
�
|pm(G) − x| � 1

�
�

1

2
.

(d) Find a collection of graphs G such that var
h
detAs(

−→
G)
i
, where

−→
G is a random orientation

of G, is not polynomially bounded in the size of G, i.e. there is no polynomial p such that

var
h
detAs(

−→
G)
i
� p(|V(G)| + |E(G)|) . (This means that the algorithm we just developed does

not run in polynomial time for all the input graphs.)
Hint: Consider multiple copies of a graph containing only one cycle.

A useful fact.

Theorem 3 (Chebyshev's Inequality). Let X be a random variable with �nite expected value

µ and �nite non-zero variance σ2. Then for any real number k > 0,

Pr
�
|X− µ| � kσ)

� � 1

k2
.

8

Answer to Exercise 3

(a)

E
h
detAs(

−→
G)
i
= E

2
4∑

π

sign(π)
∏
i

ai,π(i)

3
5 =
∑
π

sign(π)E

2
4∏

i

ai,π(i)

3
5

If there exists j such that π(j) = j or (j, π(j)) /2 E(G), then
∏

i ai,π(i) = 0. Further, if there

exists j such that π(π(j)) 6= j, then we have that E
h∏

i ai,π(i)

i
= E

h∏
i 6=j ai,π(i)

i
E
h
aj,π(j)

i
=

0 because aj,π(j) is independent from the other terms and has expectation 0. We are left
with only the permutations π such that π(π(i)) = i, 8i; for these, the term ∏i ai,π(i) =
1 = (π) because each variable appears exactly 2 times in the sum and they consist of
even cycles. Finally it is not hard to see that there exists a bijection between these
permutations and the perfect matchings of G. This concludes the argument.

(b) We �rst plug in the de�nition of the determinant

E

��
detAs(

−→
G)
�2�

= E

2
64
0
@∑

π

sign(π)
∏
i

ai,π(i)

1
A

2
3
75.

We partition the set of permutations into a set

A := {π : 9j : π(j) = j∨ (j, π(j)) /2 E(G)}

and its complement
B := {π : π /2 A}.

Every permutation in A contributes a zero term to the product, and therefore we have

E

2
64
0
@∑

π

sign(π)
∏
i

ai,π(i)

1
A

2
3
75 = E

2
64
0
@∑

π2B

sign(π)
∏
i

ai,π(i)

1
A

2
3
75

= E

2
64∑
π12B

∑
π22B

sign(π1) � sign(π2)
∏
i

ai,π1(i)

∏
i

ai,π2(i)

3
75

= E

2
64∑
π12B

∑
π22B

val(π1) � val(π2)

3
75

where val(π) := sign(π)
∏

i ai,π(i). We then de�ne another set of permutation C � B:

C := {π 2 B : all cycles in π are of even length}

. Next, we show that

E

2
64∑
π12B

∑
π22B

val(π1) � val(π2)

3
75 = E

2
64∑
π12C

∑
π22C

val(π1) � val(π2)

3
75. (1)

9

Figure 1: The six options of permutations on an (even) cycle. Notice that the same permuta-
tion types exist on a longer (even) cycle. The red arrows go from vertex i to vertex
π1(i) while the blue arrows go from vertex i to vertex π2(i).

To do so, we �x some permutation π1 2 B that contains an odd cycle and an arbitrary
permutation π2 2 B. Then consider the odd cycle c incident to the lowest indexed
vertex among the odd cycles in π1. If this odd cycle does not appear in π2 in some
direction, there is a term aij that only appears once in val(π1) � val(π2). Therefore
E
�
val(π1) � val(π2)

�
= 0 because the edge directions are chosen independently. Similarly,

this holds for every (odd) cycle in π1. Therefore the cycle c is also incident to the lowest
indexed vertex on an odd cycle in π2. We now pair permutations 1: (π1, π2), 2: (π

0
1 = π1

with c reversed, π2), 3: (π1, π
0
2 = π2 with c reversed) and 4: (π 01, π

0
2). Since

val(π1) � val(π2) = −val(π 01) � val(π2) = −val(π1) � val(π 02) = val(π 01) � val(π 02)

these 4 cancel out and this establishes (1).

Finally, we show that

E

2
64∑
π12C

∑
π22C

val(π1) � val(π2)

3
75 =

∑
M12M

∑
M22M

3a(M1,M2). (2)

We �x two matchings M1 and M2 and we let the support Es denote the set of edges that
are either in M1, in M2 or in both. This support consists of even cycles and isolated
edges. Given a �xed support Es, we are interested in the amount of (ordered) matching
pairs that yield Es. For every isolated edge there is exactly one option: Both M1 and M2

have to contain it. But for each cycle there are exactly two possible options. Therefore,
the amount of matchings is given by the 2#even cycles. Now, we consider the amount of
pairs of permutations π1, π2 that live on this support. For each isolated edge (i, j), there
is exactly one choice for both π1 and π2. For each even cycle however, there are 6 choices.
These are displayed in Figure 1. Therefore, the total number of permutations supported
is 6#even cycles, and there is a mapping from each pair of matchings yielding the support
to 3#even cycles permutations. In such a way, each permutation is allocated to a pair of
matchings. This establishes (2) and concludes the solution to this exercise.

(c) Sample N independent random orientations for the edges of G and let
−→
G1, . . . ,

−→
GN be

these graph. The algorithm returns 1
N

∑N
i=1 detAs(

−→
G i). The variance of this quantity is

given by 1/N times the variance of an individual run by independence of the runs and
var[X+ Y] = var

�
[
�
X] + var

�
[
�
Y] for X and Y independent, and the fact that var[c � X] =

10

c2 � var[X]. That is
vuuut var

2
4 1

N

N∑
i=1

detAs(
−→
G i)

3
5 =

1p
N

r
var

h
detAs(

−→
G i)

i
.

By Chebyshev's inequality:

Pr

2
664
�����E
h
detAs(

−→
G)
i
−

1

N

N∑
i=1

detAs(
−→
G i)

����� � k

vuuut var

2
4 1

N

N∑
i=1

detAs(
−→
G i)

3
5
3
775 � 1

k2

For k =
p
2, we obtain the desired bound. Each iteration of the algorithm computes a

determinant. Using gaussian elimination, this can be implemented in polynomial time.

(d) Fix n 2 N, divisible by 4 and consider the graph G made by the union of n/4 copies of
the cycle graph on 4 edges C4.
Since C4 has two perfect matchings, we have that

pm(G) = 2n/4.

Consider the pairs of matchings M1,M2 2 M that are disjoint (i.e. they do not share
any edge). There are exactly 2n/4 such pairs because for each copy of C4 we have 2
possible combinations. Furthermore, if M1 and M2 are disjoint, the graph obtained by
the xor of the edges is G and a(M1,M2) = n/4. Using the results from the previous
part of the exercise,

var
h
detAs(

−→
G i)

i
= E

��
detAs(

−→
G)
�2�

−

�
E
h
detAs(

−→
G)
i�2

=
∑

M12M

∑
M22M

3a(M1,M2) − pm(G)2

�
∑

M1,M2 disjoint

3a(M1,M2) − pm(G)2

= 2n/4 3n/4 − 2n/2

� 3

2
2n/2 − 2n/2 =

1

2
2n/2

11

