
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms, Probability, and Computing Special Assignment 2 HS23

• Write your solutions using a computer, where we strongly recommend to use LATEX. We

do not grade hand-written solutions.

• The solution is due on December 12th, 2023 by 2 pm. Please submit one �le per exercise

on Moodle.

• For geometric drawings that can easily be integrated into LATEX documents, we rec-

ommend the drawing editor IPE, retrievable at http://ipe.otfried.org or through

various package managers.

• Write short, simple, and precise sentences.

• This is a theory course, which means: if an exercise does not explicitly say \you do not

need to prove your answer" or \justify intuitively", then a formal proof is always required.

You can of course refer in your solutions to the lecture notes and to the exercises, if a

result you need has already been proved there.

• We would like to stress that the ETH Disciplinary Code applies to this special assignment

as it constitutes part of your �nal grade. The only exception we make to the Code is

that we encourage you to verbally discuss the tasks with your colleagues. However, you

need to include a list of all of your collaborators in each of your submissions. It is strictly

prohibited to share any (hand)written or electronic (partial) solutions with any of your

colleagues. We are obligated to inform the Rector of any violations of the Code.

• There will be two special assignments this semester. Both of them will be graded and

the average grade will contribute 20% to your �nal grade.

• As with all exercises, the material of the special assignments is relevant for the (midterm

and �nal) exams.

1

http://ipe.otfried.org


Exercise 1 10 points

(Flow in bipartite graph)

Let G = (V, E) be bipartite graph where V = S [ T , |S| = n, and |T | = m. Furthermore let

s : S 7→ R�0, d : T 7→ R�0 be positive functions.

All the edges e = (u, v) in G have one endpoint in S and one endpoint in T and G represents

a network that connect nodes i 2 S with the nodes j 2 T . Suppose that each node i 2 S

comes with a quantity s(i) of available resources and each node j 2 T comes with a demand

of resources d(j). We want to �gure out whether there is a way to route the resources from

the nodes in S to the nodes in T that the satis�es the demand. For simplicity, we make the

assumption that
∑

i s(i) =
∑

j d(j), i.e. the total quantity of resources available matches the

total demand.

Create variable xij for each edge (i, j) 2 E and consider the following linear program.

max
∑
e2E

0 xe

such that: ∑
j

xij � s(i), 8i 2 S;

∑
i

xij � d(j), 8j 2 T ;

xi,j � 0

(a) Prove that there is a way to match the resources to the demands if and only if the linear

program is feasible.

(b) Write the dual of the linear program above.

(c) Prove that the �rst linear program has a solution if and only if the following condition

holds. For each Q � S, ∑
i2Q

s(i) �
∑

j:9(i,j)2E,i2Q

d(j)

and for every Q � T , ∑
j2Q

d(j) �
∑

i:9(i,j)2E,j2Q

s(i)

.

Hint: look at Theorem 4.6 from the lecture notes.

2



Exercise 2 25 points

(Grading scheduling)

The APC exam consists of n exercises, and the course has m teaching assistants that partake

in grading. Based on their skills, each TA i takes tij > 0 hours to grade exercise number j. We

aim to grade all the exercises in the least time possible such that feedback can be provided in

a timely manner1. In other words, let xij an indicator variable that attains value 1 if exercise

j get assigned to TA i and zero otherwise. Then we want to minimize maxi
∑

j xijtij.

Consider the following integer program2.

min T∑
i

xij � 1, 8j

T �
∑
j

xijtij, 8i

xij 2 {0, 1}, 8i, j

(a) Argue that the integer program �nds the optimal assignment of exercises to TAs.

(b) Relax the program above to an LP (substitute xij 2 {0, 1} with xij 2 [0, 1]) and prove that

the integrality gap of the program above is at least m. In other words, �nd an example

of ti,j so that the ratio between the best solution of the integer program above and the

relaxed program is at least m.

We now modify the algorithm to get a much better integral solution via an intricate rounding

scheme. Let ~t be a �xed value and consider the relaxation of the LP as in (b) above with the

extra constraint that

xij = 0, if tij > ~t

for some threshold value ~t. When ~t is chosen appropriately, this captures the intuition that

questions should not be allocated to TAs that know very little about the topic.

(c) Show that the LP is feasible for some value ~t = tij.

Now, suppose that this new problem is feasible for some ~t and and let x be an optimal but

fractional solution x with cost T(~t). We want to show that it is possible to round x into an

integral solution of cost at most T(~t) + ~t.

We let qi = d
∑

j xije. This intuitively corresponds to some educated guess of the number

questions TA i is supposed to grade. To allocate questions to TAs, we build a bipartite graph

with TAs on the left side, and questions on the right side. TA i appears qi times on the left

side, which encodes that they can be given up to qi questions to grade. We refer to the copies

of TA i as i1, . . . iqi . Each question just appears once and we will refer to its vertex as j.

1For simplicity, we assume that each exercise is only graded by one TA.
2A integer program is a linear program with the additional constraint that the solution has to be integral.

This turns out to be a very powerful modi�cation, that allows encoding NP hard problems, too.

3



Next, we de�ne a tricky set of indices. We let πi(j) denote the index of the question TA i

is j-th slowest at grading. To illustrate this de�nition, consider the following example with 3

questions where TA i takes two hours to grade question 1 (pi1 = 2), three hours for question 2

(pi2 = 3) and just one hour for question 3 (pi3 = 1). Then πi(1) = 2, πi(2) = 1 and πi(3) = 3.

We then de�ne a bipartite graph by adding the following edges for each TA i.

1. Initialize c← 1, j← 1, r← 1 and w← xiπi(1).

2. While (j � n):

• If w � r, add an edge of weight xiπi(j) from exercise πi(j) to TA ic if xiπi(j) 6= 0.

Update r← r−w, j← j+ 1 and w← xiπi(j) (with the newly updated j).

• Else, add an edge of weight xiπi(j) from exercise πi(j) to TA ic if xiπi(j) 6= 0. Update

w← w− r, r← 1 and c← c+ 1.

Finally, we construct an unweighted bipartite graph by taking all edges of the weighted bipar-

tite graph we built.

(d) Prove that c is bounded by qi when running the above algorithm for TA i, i.e. we don't

attempt to add an edge to a copy of a TA that doesn't exist.

(e) Show that the unweighted bipartite graph built contains a matching with n edges.

Take a matching with n edges in the unweighted bipartite graph we built.

(f) Prove that the matching returned corresponds to an integral solution with value at most

T(~t) + ~t where T(~t) is the fractional solution obtained with threshold ~t.

(g) Let OPT be the cost of the optimal solution of the integer program, i.e. the time required

for the grading with the optimal assignment. Describe a polynomial time algorithm that

�nds an assignment of the exercise to TAs such that the exam can be graded in time at

most 2OPT.

Hint: How do you choose ~t?

Some useful facts.

Definition 1. Given a graph G = (V, E), a fractional matching of G is a function z : E 7→ [0, 1]
such that ∑

e3i

z(e) � 1

for all i 2 V. The size of the fractional matching is
∑

e2E z(e).

Fact 2. Every bipartite graph is a stable graph, i.e. the size of the biggest fractional

matching in a bipartite graph is an integer and equals the size of the biggest matching

in the graph.

4



Exercise 3 20 points

(Random orientation)

Let G = (V, E) be a graph and let
−→
G be a graph obtained by orienting the edges of G indepen-

dently with probability 1/2 in either direction. Given
−→
G , de�ne the skew symmetric matrix

As such that

As(i, j) =


+1, (i, j) 2 E with orientation from i to j,

−1, (i, j) 2 E with orientation from j to i,

0, otherwise.

(a) Let pm(G) denotes the number of perfect matchings in G, prove that

E
h
detAs(

−→
G)

i
= pm(G).

Hint: Use the de�nition of determinant and the linearity of expectation.

(b) Given two perfect matchings M1,M2 of G, denote with a(M1,M2) the number of cycles
in G made of (alternating) edges contained in M1 and M2 (or equivalently the cycles in

M1 xor M2), and denote with M the set of all perfect matchings in G. Prove that

E

��
detAs(

−→
G)

�2�
=
∑

M12M

∑
M22M

3a(M1,M2).

Hint: You may �nd inspiration in the proof of Theorem 5.3. First deal with permutations

whose directed graph uses edges that do not appear in G. Next argue about the contribution

from permutations where this graph contains at least one cycle of odd length, and �nally

the rest.

(c) Let

var
h
detAs(

−→
G i)

i
= E

��
detAs(

−→
G)

�2�
−

�
E
h
detAs(

−→
G)

i�2

.

Design a randomized algorithm that computes the determinant of at mostN = 2 var
h
detAs(

−→
G i)

i
matrices, runs in O(N poly(|V |)) time, and returns x such that

Pr
�
|pm(G) − x| � 1

�
�

1

2
.

(d) Find a collection of graphs G such that var
h
detAs(

−→
G)

i
, where

−→
G is a random orientation

of G, is not polynomially bounded in the size of G, i.e. there is no polynomial p such

that var
h
detAs(

−→
G)

i
� p(|V(G)| + |E(G)|) . (This means that the algorithm we just

developed does not run in polynomial time for all the input graphs.)

Hint: Consider multiple copies of a graph containing only one cycle.

A useful fact.

Theorem 3 (Chebyshev's Inequality). Let X be a random variable with �nite expected value

µ and �nite non-zero variance σ2. Then for any real number k > 0,

Pr
�
|X− µ| � kσ)

�
�

1

k2
.

5


