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1 Overview

First part of this lecture introduces the concept of a separating hyperplane of two sets followed by
a proof that for two closed, convex and disjoint sets a separating hyperplane always exists. This
is a variant of the more general separating hyperplane theorem1 due to Minkowski. Then Lagrange
multipliers x , s of a convex optimization problem

min
y
E(y)

s.t. Ay = b

c(y) ≤ 0

are introduced and with that, the Lagrangian

L(y ,x , s) = E(y) + x>(b −Ay) + s>c(y)

is defined. Finally, we deal with the dual problem

max
x ,s,s≥0

L(x , s),

where L(x , s) = miny L(y ,x , s). We show weak duality, i.e. L(y ,x , s) ≤ E(y) and that assuming
Slater’s condition the values of both the primal and dual is equal, which is referred to as strong
duality.

2 Separating Hyperplane Theorem

Suppose we have two convex subsets A,B ⊆ Rn that are disjoint (A ∪ B = ∅). We wish to show
that there will always be a (hyper-)plane H that separates these two sets, i.e. A lies on one side,
and B on the other side of H.

So what exactly do we mean by Hyperplane? Let’s define it.

Definition 2.1 (Hyperplane). A hyperplane H of dimension n is the subset H := {x ∈ Rn :
〈n ,x 〉 = µ}. We say H has normal n ∈ Rn and threshold µ. It is required that n 6= 0.

Every hyperplane divides Rn into two halfspaces {x : 〈v ,x 〉 ≥ µ} and {x : 〈v ,x 〉 ≤ µ}. It separates
two sets, if they lie in different halfspaces. We formally define separating hyperplane as follows.

1Wikipedia is good on this: https://en.wikipedia.org/wiki/Hyperplane separation theorem
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Definition 2.2 (Separating Hyperplane). We say a hyperplane H separates two sets A,B iff

∀aaa ∈ A : 〈n ,aaa〉 ≥ µ
∀b ∈ B : 〈n , b〉 ≤ µ

If we replace ≥ with > and ≤ with < we say H strictly separates A and B.

It is easy to see that there exists disjoint non-convex sets that can not be separated by a hyperplane
(e.g. a point cannot be separated from a ring around it). But can two disjoint convex sets always be
strictly separated by a hyperplane? The answer is no: consider the two-dimensional case depicted
in Figure 1 with A = {(x, y) : x ≤ 0} and B = {(x, y) : x > 0 and y ≥ 1

x}. Clearly they are disjoint;
however the only separating hyperplane is H = {(x, y) : x = 0} but it intersects A.

Figure 1: The sets A = {(x, y) : x ≤ 0} and B = {(x, y) : x > 0 and y ≥ 1
x} only permit a

non-strictly separating hyperplane.

One can prove that there exists a non-strictly separating hyperplane for any two disjoint convex sets.
We will prove that if we further require A,B to be closed and bounded, then a strictly separating
hyperplane always exists. (Note in the example above how our choice of B is not bounded.)

Theorem 2.3 (Separating Hyperplane Theorem; closed, bounded sets). For two closed, bounded,
and disjoint convex sets A,B ∈ Rn there exists a strictly separating hyperplane H. One such

hyperplane is given by normal n = d − c and threshold µ = 1
2

(
‖d‖22 − ‖c‖

2
2

)
, where c ∈ A, d ∈ B

are the minimizers of the distance between A and B

dist(A,B) = min
aaa∈A,b∈B

‖aaa − b‖2 > 0.
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Proof. We omit the proof that dist(A,B) = minaaa∈A,b∈B ‖aaa − b‖2 > 0, which follows from A,B
being disjoint, closed, and bounded. Now, we want to show that 〈n , b〉 > µ for all b ∈ B; then
〈n ,aaa〉 < µ for all aaa ∈ A follows by symmetry. Observe that

〈n ,d〉 − µ = 〈d − c,d〉 − 1

2

(
‖d‖22 − ‖c‖

2
2

)
= ‖d‖22 − d>c − 1

2
‖d‖22 +

1

2
‖c‖22

=
1

2
‖d − c‖22 > 0.

So suppose there exists u ∈ B such that 〈n ,u〉 − µ ≤ 0. We now look at the line defined by the
distance minimizer d and the point on the “wrong side” u . Define b(λ) = d + λ(u − d), and take
the derivative of the distance between b(λ) and c. Evaluated at λ = 0 (which is when b(λ) = d),
this yields

d

dλ
‖b(λ)− c‖22

∣∣∣∣
λ=0

= 2 〈d − λd + λu − c,u − d〉|λ=0 = 2 〈d − c,u − d〉 .

However, this would imply that the gradient is strictly negative since

〈n ,u〉 − µ = 〈d − c,u〉 − 〈d − c,d〉+ 〈d − c,d〉 − µ

= 〈d − c,u − d〉+ ‖d‖22 − 〈c,d〉 −
1

2
‖d‖22 +

1

2
‖c‖22

= 〈d − c,u − d〉+
1

2
‖d − c‖22 ≤ 0.

This contradicts the minimality of d and thus concludes this proof.

A more general separating hyperplane theorem holds even when the sets are not closed and bounded:

Theorem 2.4 (Separating Hyperplane Theorem). Given two disjoint convex sets A,B ∈ Rn there
exists a hyperplane H separating them.

3 Lagrange Multipliers and Duality of convex problems

In this Section, we’ll learn about Langrange Multipliers and how they lead to convex duality. But
first, let’s see an example to help illustrate where these ideas come from.

Imagine you were to prove that for all x ∈ Rn we have ‖x‖p ≤ n
1
2
− 1

p ‖x‖2 for some 1 ≤ p ≤ 2;. We
can look at this as optimizing maxx ‖x‖p subject to ‖x‖2 being constant, e.g. simply ‖x‖2 = 1.
Then the statement above follows from a scaling argument.

If we move from x to x + δ with δ ⊥ ∇x ‖x‖2 and δ 6⊥ ∇x ‖x‖p means that for infinitesimally
small δ the 2-norm stays constant but the p-norm changes. That means for either x − δ or x + δ
the p-norm while the 2-norm stays constant. Hence at the maximum of ‖x‖p the gradients of both
norms have to be parallel, i.e.

∇x

(
‖x‖p − λ ‖x‖2

)
= 0.

This insight is the core idea of Lagrange multipliers (in this case λ).

Note that here the problem is not convex, as {x : ‖x‖22 = 1} is not convex. In the following we will
study Lagrange multipliers for general convex problems.
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Figure 2: Looking at fixed ‖x‖p = α and ‖x‖2 = 1. (Here, p = 1.5.)

3.1 General convex problems

A full formal treament of convex duality would require us to be more careful about using inf and
sup in place of min and max, as well as considering problems that have no feasible solutions. Today,
we’ll ignore these concerns.

Let us consider a general convex optimization problem with convex objective, linear equality con-
straints and convex inequality constraints

min
y∈S
E(y) (1)

s.t. Ay = b

c(y) ≤ 0,

where E(y) : S → R is defined on a convex subset S ⊆ Rn, A ∈ Rm×n and c(y) is a vector of
constraints c(y) = (ci(y))i∈[k]. For every i ∈ [k] the function ci : S → R is convex.

Definition 3.1 (Primal feasibility). We say that y ∈ S is primal feasible if all constraints are
satisfied, i.e. Ay = b and c(y) ≤ 0.

In the following we will denote by α∗ = E(y∗) the optimal value of the primal program where y∗

is an minimizer.

Definition 3.2. Next we introduce the dual variables x ∈ Rm, s ∈ Rk and define the Lagrangian
as

L(y ,x , s) = E(y) + x>(b −Ay) + s>c(y).

We also define a Lagrangian only in terms of the dual variables by minimizing over y as

L(x , s) = min
y
L(y ,x , s).

Definition 3.3 (Dual feasibility). We say (x , s) is dual feasible if s ≥ 0. If additionally y is primal
feasible, we say (y ,x , s) is primal-dual feasible.
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Definition 3.4 (Dual problem). We define the dual problem as

max
x ,s
s≥0

min
y
L(y ,x , s) = max

x ,s
s≥0

L(x , s) (2)

and denote the optimal dual value by β∗.

For each y , the Lagrangian L(y ,x , s) is linear in (x , s) and hence also concave in them. Hence
L(x , s) is a concave function, because it is the pointwise minimum (over y), of a collection of
concave functions in (x , s).

This also means that the dual problem is really a convex optimization problem in disguise, because
we can flip the sign of −L(x , s) to get a convex function and minimizing this is equivalent to
maximizing L(x , s).

max
x ,s
s≥0

L(x , s) = −min
x ,s
s≥0
−L(x , s)

3.2 Weak Duality

First we see that the primal problem can be written in terms of the Lagrangian as

α∗ = min
y

max
x ;s≥0

L(y ,x , s) (3)

This is because for a minimizing y all constraints have to be satisfied and the Lagrangian simplifies
to L(y ,x , s) = E(y). If Ax − b = 0 was violated, making x large sends L(y ,x , s) → ∞. And if
c(y) ≤ 0 is violated, we can make L(y ,x , s)→∞ by choosing large s.

Note that we require s ≥ 0, as we only want to penalize the violation of the inequality constraints
in one direction, i.e. when c(y) > 0.

For any primal-dual feasible y ,x , s we have L(y ,x , s) ≤ E(y) and hence also L(x , s) =
miny L(y ,x , s) ≤ E(y).

In other words maxx ;s≥0 L(x , s) = β∗ ≤ α∗. This is referred to as weak duality.

Using the forms in Equations (2) and (3), we can also state this as

α∗ = min
y

max
x ;s≥0

L(y ,x , s) ≥ max
x ;s≥0

min
y
L(y ,x , s) = β∗.

3.3 Strong Duality

So now that we have proved weak duality β∗ ≤ α∗, what is strong duality? β∗ = α∗? The answer
is yes, but strong duality only holds under some conditions.

One sufficient condition we look at today is a variant of Slater’s condition2.

Definition 3.5 (Slater’s condition). A (primal) problem as defined in (1) fulfills Slater’s condition
if there exists a strictly feasible point, i.e. there exists ỹ s.t. Aỹ = b and c(ỹ) < 0. This means
that the strictly feasible point ỹ lies strictly inside the set {y : c(y) ≤ 0} defined by the inequality
constraints.

2Again, Wikipedia is helpful here: https://en.wikipedia.org/wiki/Slater’s condition
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Theorem 3.6. For a problem satisfying Slater’s condition, strong duality holds, i.e. α∗ = β∗. In
other words, the optimal value of the primal problem α∗ is equal to the optimal value of the dual.

How are we going to prove this? Before we prove the theorem, let’s make a few observations
to get us warmed up. If you get bored, skip ahead to the proof.

It is sufficient to prove that α∗ ≤ β∗, as the statement then follows in conjunction with weak
duality. We define the set

G = {(E(y),Ay − b, c(y)) : y ∈ S},

where S ⊆ Rn is the domain of E .

Immediately, we observe that we can write the optimal primal value as

α∗ = min{t : (t, v ,u) ∈ G, v = 0,u ≤ 0}.

Similarly, we can write the Lagrangian (after minimizing over y)

L(x , s) = min
(t,v ,u)∈G

(1,x , s)>(t, v ,u).

This is equivalent to the inequality, for (t, v ,u) ∈ G,

(1,x , s)>(t, v ,u) ≥ L(x , s).

which defines a hyperplane with n = (1,x , s) and µ = L(x , s) such that G is on one side.

To establish strong duality, we would like to show the existence of a hyperplane such that for
(t, v ,u) ∈ G

n>(t, v ,u) ≥ α∗ and n = (1, x̂ , ŝ) with ŝ ≥ 0.

Then we would immediately get

β∗ ≥ L(x̂ , ŝ) = min
(t,v ,u)∈G

(1,x , s)>(t, v ,u) ≥ α∗.

Perhaps not surprisingly, we will use the Separating Hyperplane Theorem. What are the challenges
we need to deal with?

• We need to replace G with a convex set (which we will call A) and separate A from some
other convex set (which we will call B).

• We need to make sure the hyperplane normal n has 1 in the first coordinate and s ≥ 0, and
the hyperplane threshold is α∗.

Proof of Theorem 3.6. Let’s move to on finding two convex disjoints sets A,B to enable the use of
the separating hyperplane Theorem 2.4.

First set we define A, roughly speaking, as a multi-dimensional epigraph of G. More precisely

A = {(t, v ,u) : ∃y ∈ S, t ≥ E(y), v = Ay − b,u ≥ c(y)}.
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Note that A is a convex set. The proof is similar to the proof that the epigraph of a convex function
is a convex set. The optimal value of the primal program can be now written as

α∗ = min
(t,0,0)∈A

t.

And we define another set B of the same dimensionality as A by

B := {(r ∈ R,0 ∈ Rm,0 ∈ Rk) : r < α∗}.

This set B is convex, as it is a ray. An example of two such sets A,B is illustrated in Figure 3.

We show that A∩B = ∅ by contradiction. Suppose A,B are not disjoint; then there exists y such
that

(E(y),Ay − b, c(y)) = (r,0,u)

with u ≤ 0. But this means that y is feasible and E(y) = r < α∗; contradicting the optimality of
α∗.

To make things simpler, we assume that our linear constraint matrix A ∈ Rm×n, has full row rank
and m < n (but very little extra work is required to deal with the remaining cases, which we omit).

As we just proved, A and B are convex and disjoint sets and hence the separating hyperplane
theorem (Theorem 2.4) we introduced earlier in this lecture implies the existence a separating
hyperplane. This means there exists a normal n = (ρ̃, x̃ , s̃) and threshold µ and with A on one
side, i.e.

(t, v ,u) ∈ A =⇒ (t, v ,u)>(ρ̃, x̃ , s̃) ≥ µ

and the set B on the other side:

(t, v ,u) ∈ B =⇒ (t, v ,u)>(ρ̃, x̃ , s̃) ≤ µ.

Now, we claim that s̃ ≥ 0. Suppose s̃(i) < 0, then for u(i) → ∞ the threshold would grow
unbounded, i.e. µ→ −∞ contradicting that the threshold µ is finite by the separating hyperplane
theorem. Similarly we claim ρ̃ ≥ 0, as if this were not the case, having t→∞ implies that µ→ −∞
again contradicting the finiteness of µ.

From Equation (3.3) it follows that tρ̃ ≤ µ for all t < α∗ which implies that tρ̃ ≤ µ for t = α∗ by
taking the limit. Hence we have α∗ρ̃ ≤ µ. From (t, v ,u) ∈ A we get from Equation (3.3)

(ρ̃, x̃ , s̃)>(t, v ,u) ≥ µ ≥ α∗ρ̃

and thus
(ρ̃, x̃ , s̃)>(E(y),Ay − b, c(y)) ≥ α∗ρ̃.

Now we consider two cases; starting with the “good” case where ρ̃ > 0. Dividing Equation (3.3)
by ρ̃ gives

E(y) +
x̃>

ρ̃
(Ay − b) +

s̃>

ρ̃
c(y) ≥ α∗.

Noting that the left hand side above is L(y , x̃ρ̃ ,
s̃
ρ̃ ) and that the equation holds for arbitrary y ;

therefore also for the minimum we get

min
y
L

(
y ,

x̃

ρ̃
,
s̃

ρ̃

)
≥ α∗
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and hence via definition of β∗ finally

β∗ ≥ L
(
x̃

ρ̃
,
s̃

ρ̃

)
≥ α∗.

Next consider the “bad” case ρ̃ = 0. As α∗ρ̃ ≤ µ, we have 0 ≤ µ. From Equation (3.3) we get

c(y)>s + x>(b −Ay) ≥ µ ≥ 0.

As Slater’s condition holds, there is an interior point ỹ , i.e. it satisfies b −Aỹ = 0 and c(ỹ) < 0.
Together with the equation above this yields

c(ỹ)>s̃ + x̃>0 ≥ 0

which implies c(ỹ)>s̃ ≥ 0 and as c(ỹ) < 0 this means s̃ = 0.

As the normal (ρ̃, s̃, x̃ ) of the hyperplane can not be all zeroes, this means the last “component”
x̃ must contain a non-zero entry, i.e. x̃ 6= 0. Furthermore x̃>(b −Aỹ) = 0, c(ỹ) < 0 and A has
full row rank, hence there exists δ such that

x̃>(b −A(ỹ + δ)) < 0 and c(ỹ + δ) < 0.

This, however, means that there is a point in A on the wrong side of the hyperplane, as

(ρ̃, x̃ , s̃)>(E(ỹ + δ), b −A(ỹ + δ), c(ỹ + δ)) < 0

but the threshold is µ ≥ 0.

Remark. Note that our reasoning about why s ≥ 0 in the proof above is very similar to our
reasoning for why the primal program can be written as Problem (3).

Example. As an example of A and B as they appear in the above proof, consider

min
y∈(0,∞)
1/y−1≤0

y2

This leads to α∗ = 1, y∗ = 1, and A =
{

(t, u) : y ∈ (0,∞) and t > y2 and u ≥ 1/y − 1
}

, and
B = {(t, 0) : t < 1} and the separating hyperplane normal is n = (1, 2). These two sets A,B
are illustrated in Figure 3.
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Figure 3: Example of the convex sets A and B we wish to separate by hyperplane.

3.4 The gradient perspective

Let’s come back to what we said earlier about parallel gradient. Suppose y∗ is an optimizer of the
primal problem and x ∗, s∗ for the dual. We thus have

L(y∗,x ∗, s∗) = α∗ = β∗.

Because L(y ,x ∗, s∗) is a convex function in y , it also follows that if E : S → R and c are
differentiable and the minimizer y∗ is not on the boundary of S, then we must have that the
gradient w.r.t. y is zero, i.e.

∇yL(y ,x ∗, s∗)|y=y∗ = 0

and plugging in
L(y ,x ∗, s∗) = E(y) + x>(b −Ay) + s>c(y)

yields
∇E(y) + x>∇y(b −Ay) + s>∇c(y) = 0.

And this connects to our point of the parallel gradients from the beginning of this section.

3.5 Complementary Slackness

We will see more of this next time, but if we look at y∗ we see that

E(y∗) = α∗ = E(y∗) + x>(b −Ay∗) + s>c(y∗) = E(y∗) + s>c(y∗)

and hence when the i-th convex constraint is not active, i.e. ci(y
∗) < 0 the slack must be zero, i.e.

s(i) = 0. Conversely if the slack is non-zero, that is s(i) 6= 0 implies that the constraint is active,
i.e. ci(y

∗) = 0.

A good reference for this is Boyd’s free online book “Convex optimization” (linked to on the
course website). It provides a number of different interpretations of duality. One particularly
interesting one comes from economics: economists see the slack variables s as prices for violating
the constraints.
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