
Advanced Graph Algorithms and Optimization Spring 2020

Interior Point Methods for Maximum Flow

Rasmus Kyng Lecture 14 — Wednesday, May 13th

Notation

In this lecture, we’re going to frequently need to refer to vectors arising from elementwise operations
combining other vectors.

To that end, given two vector aaa ∈ Rm, and b ∈ Rm, we will use
−−−−−−→
(aaa(i)b(i)) to denote the vector z

with z (i) = aaa(i)b(i) and so on.

Throughout this lecture, when we are working in the context of some given graph G with vertices
V and edges E, we will let m = |E| and n = |V |.

1 An Interior Point Method

The Maximum Flow problem in undirected graphs.

max
f ∈RE

F (1)

s.t. Bf = Fbst “The Undirected Maximum Flow Problem”

−c ≤ f ≤ c

We use val(f ) to denote F when Bf = Fbst.

As we develop algorithms for this problem, we will assume that we know the maximum flow value
F ∗. Let f ∗ denote some maximum flow, i.e. a flow with −c ≤ f ≤ c can val(f ∗) = F ∗.

In general, an a lower bound F ≤ F ∗ will allow us to find a flow with value F , and because of this,
we can use a binary search to approximate F ∗.

1.1 A barrier function and an algorithmic framework

V (f ) =
∑
e

− log(c(e)− f (e))− log(c(e) + f (e))

We assume the optimal value of Program (1) is F ∗. Then for a given 0 ≤ α < 1 we define a program

min
f ∈RE

V (f ) (2)

s.t. Bf = αF ∗bst “The Barrier Problem”

This problem makes sense for any 0 ≤ α < 1. When α = 0, we are not routing any flow yet. This
will be our starting point. For any 0 ≤ α < 1, the scaled-down maximum flow αf ∗ strictly satisfies
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the capacities −c < αf ∗ < c, and Bαf ∗ = αF ∗bst. Hence αf ∗ is a feasible flow for this value
of α and hence V (αf ∗) < ∞ and so the optimal flow for the Barrier Problem at this α must also
have objective value strictly below ∞, and hence in turn strictly satisfy the capacity constraints.
Thus, if we can find the optimal flow for Program (2) for α = 1 − ε, we will have a feasible flow
with Program (1), the Undirected Maximum Flow Problem, routing (1− ε)F ∗. This is how we will
develop an algorithm for computing the maximum flow.

It turns out that, if we have a solution f 1 to this problem for some α1 < 1, then we can find a
solution f 2 for some α2 > α1. And, we can compute f 1 using a small number of Newton steps,
each of which will only require a Laplacian linear equation solve, and hence is computable in Õ(m)
time. Concretely, for any 0 ≤ α1 < 1, given the optimal flow at this α1, we will be able to compute
the optimal flow at α2 = α1 + (1 − α1)

1
70
√
m

. This means that after T = 70
√
m log(1/ε) updates,

we have a solution for αT ≥ 1− ε.

Program (2) has the Lagrangian

L(f ,x ) = V (f ) + x>(αF ∗bst −Bf )

And we have optimality when

Bf = αF ∗bst and − c ≤ f ≤ c (3)

“Barrier feasibility”

and ∇fL(f ,x ) = 0, i.e.

∇V (f ) = B>x (4)

”Lagrangian barrier gradient optimality”

1.2 Updates using Divergence

max
δ∈RE

V (δ + f )− (V (f ) + 〈∇V (f ), δ〉) (5)

s.t. Bδ = α′F ∗bst “The Update Problem”

This problem has Lagrangian

M(δ, z ) = V (f ) + z>((α+ α′)Fbst −B(f + δ))

And we have optimality when

B(f + δ) = (α+ α′)F ∗bst (6)

and− c ≤ f + δ ≤ c “Update feasibility”

and ∇δM(δ, z ) = 0, i.e.

∇V (f + δ)−∇V (f ) = B>z (7)
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Note that if we simultaneously have (3), the “barrier feasibility” condition, and (6), the“update
feasibility” condition, satisfied along with Equations (4) and (7), then f + δ satisfies the “barrier
feasibility” with α replaced by α+ α′ and we have

∇V (f + δ) = B>(x + z ).

Thus, we can conclude, by the Karush-Kuhn-Tucker theorem from the previous lecture, that f + δ
is optimal for the optimization problem

min
f ∈RE

V (f )

s.t. Bf = (α+ α′)F ∗bst

(8)

Lemma 1.1. Suppose f is the minimizer of Problem (2) (the Barrier Problem with parameter α)
and δ is the minimizer of Problem (5) (the Update Problem with parameters f and α′), then f + δ
is optimal for Problem (2) with parameter α+ α′ (i.e. a new instance of the Barrier problem).

I.e. f + δ is the argmin for Problem (8).

Algorithm 1: Interior Point Method

f ← 0;
α← 0;
while α < 1− ε do

a′ ← 1−α
20
√
m

;

Compute δ, the minimizer of Problem (5);
Let f ← f + δ and α← α+ α′;

end
return f

Pseudotheorem 1.1. Let f be the minimizer of Problem (2). Then, when a′ ≤ 1−α
20
√
m

, the mini-

mizer δ of Problem (8) can be computed in Õ(m) time.

The key insight in this type of interior point method is that when the update α′ is small enough,

Theorem 1.2. Algorithm 1 returns a flow f that is feasible for Problem (1) in time
Õ(m1.5 log(1/ε)).

Proof Sketch. First note that for α = 0, the minimizer of Problem (2) is f = 0. The proof now
essentially follows by Lemma (1.1), and Pseudotheorem 1.1. Note that 1 − α shrinks by a factor
(1 − 1

20
√
m

) in each iteration of the while-loop, and so after 20
√
m log(1/ε) iterations, we have

1 − α ≤ ε, at which point the loop terminates. To turn this into a formal proof, we need to
take care of the fact the proper theorem corresponding to Pseudotheorem 1.1 only gives a highly
accurate but not exact solution δ to the “Update Problem”. But it’s possible to show that this is
good enough (even though both f and δ end up not being exactly optimal in each iteration).

Remark 1.3. For the maximum flow problem, when capacities are integral and polynomially
bounded, if we choose ε = m−c for some large enough constant c, given a feasible flow with
val(f ) = 1 − ε, is it possible to compute an exact maximum flow in nearly linear time. Thus
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Theorem 1.2 can also be used to compute an exact maximum flow in Õ(m) time, but we omit
the proof. The idea is to first round to an almost optimal, feasible integral flow (which requires a
non-trivial combinatorial algorithm), and then to recover the exact flow using Ford-Fulkerson.

Remark 1.4. It is possible to reduce an instance of directed maximum flow to an instance of
undirected maximum flow in nearly-linear time, in such a way that if we can exactly solve the
undirected instance, then in nearly-linear time we can recover an exact solution to the directed
maximum flow problem. Thus Theorem (1.2) can also be used to solve directed maximum flow.

Remark 1.5. For sparse graphs with m = Õ(n) and large capacities, this running time is the best
known, and improving it is major open problem.

1.3 Understanding the Divergence Objective

D(x) = − log(1− x)− x

We let
c+(e) = c(e)− f (e) and c−(e) = c(e) + f (e)

So then

DV (δ) = V (δ + f )− (V (f ) + 〈∇V (f ), δ〉)

=
∑
e

− log

(
c(e)− (δ(e) + f (e))

c(e)− f (e)

)
− δ(e)

c(e)− f (e)

− log

(
c(e) + (δ(e) + f (e))

c(e) + f (e)

)
+

δ(e)

c(e) + f (e)

=
∑
e

D

(
δ(e)

c(e)− f (e)

)
+D

(
− δ(e)

c(e) + f (e)

)
=
∑
e

D

(
δ(e)

c+(e)

)
+D

(
− δ(e)

c−(e)

)

Note that we can express Problem (5) as

min
δ∈RE

DV (δ) (9)

s.t. Bδ = α′F ∗bst The Update Problem, restated

Note that DV (δ) is strictly convex of over the feasible set, so the argmin is unique.

1.4 Quadratically Smoothing Divergence and Local Agreement

D̃ε(x) =


− log(1− x)− x if |x| ≤ ε
D(ε) +D′(ε)(x− ε) + D′′(ε)

2 (x− ε)2 if x ≥ ε
D(−ε) +D′(−ε)(x+ ε) + D′′(−ε)

2 (x+ ε)2 if x ≤ −ε

For brevity, we define
D̃(x) = D̃0.1(x)
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Lemma 1.6.

1. 1/2 ≤ D̃′′(x ) ≤ 2.

2. For x ≥ 0, we have x/2 ≤ D̃′(x ) ≤ 2x and −2x ≤ D̃′(−x ) ≤ −x/2.

3. x2/4 ≤ D̃(x ) ≤ x2.

We also define

D̃V (δ) =
∑
e

D̃

(
δ(e)

c+(e)

)
+ D̃

(
− δ(e)

c−(e)

)

We can now introduce the smoothed optimization problem

min
δ∈RE

D̃V (δ) (10)

s.t. Bδ = α′F ∗bst “The Smoothed Update Problem”

Note that D̃V (δ) is strictly convex of over the feasible set, so the argmin is unique.

Pseudoclaim 1.7. We can compute the argmin δ∗ of Problem (10), the Smoothed Update Problem,
using the Newton-Steps for K-stable Hessian convex functions that we saw in last lecture, in Õ(m)
time.

Sketch of proof. Problem (10) fits the class of problems for which we showed in Lecture 13 that
(appropriately scaled) Newton steps converge. This is true because the Hessian is always a 2-
spectral approximation of the Hessian at D̃V (δ∗), as can be shown from Lemma 1.6. Because the
Hessian of D̃V (δ) is diagonal, and the constraints are flow constraints, each Newton step boils down
to solving a Laplacian linear system, which can be done to high accuracy Õ(m) time.

Remark 1.8. There are three things we need to modify to turn the pseudoclaim into a true claim,
addressing the errors arising from both Laplacian solvers and Newton steps:

1. We need to rephrase the claim to so that we only claim δ∗ has been computed to high accuracy,
rather than exactly.

2. We need to show that we can construct an initial guess to start off Newton’s method δ0 for
which the value D̃V (δ0) is not too large. (This is easy).

3. We need show that Newton steps converge despite using a Laplacian solver that doesn’t give
exact solutions, only high accuracy solutions. (Takes a bit of work, but is ultimately not too
difficult).

Importantly, to ensure our overall interior point method still works, we also need to show that it
converges, even if we’re using approximate solutions everywhere. This also takes some work to
show, again is not too difficult.
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Local Agreement Implies Same Optimum.

Lemma 1.9. Suppose S ⊆ Rn are a convex sets with T ⊆ S, and let f, g : S → R be convex
functions. Let x ∗ = arg minx∈T f(x ). Suppose f, g agree on a neighborhood of x ∗ in S (i.e. an
open set containing x ∗). Then x ∗ = arg minx∈T f(x ).

We define
ĉ(e) = min(c+(e), c−(e)) (11)

Lemma 1.10. Suppose δ∗ is the argmin of Problem (10), the Smoothed Update Problem, and∥∥∥−−−−−−−−→(δ∗(e)/ĉ(e))
∥∥∥
∞
< 0.1. Then δ∗ is the argmin of Problem (9).

Proof. We observe that if
∥∥∥−−−−−−−−→(δ∗(e)/ĉ(e))

∥∥∥
∞
< 0.1, then D̃V (δ∗) = DV (δ∗), and, for all τ ∈ Rm

with norm ∥∥∥−−−−−−−−→(τ (e)/ĉ(e))
∥∥∥
∞
< 0.1−

∥∥∥−−−−−−−−→(δ∗(e)/ĉ(e))
∥∥∥
∞

we have that D̃V (δ∗ + τ ) = DV (δ∗ + τ ). Thus D̃V and DV agree on a neighborhood around δ∗

and hence by Lemma 1.9, we have that δ∗ is the argmin of Problem (9).

1.5 Step size for divergence update

Definition 1.11 (s-t well-conditioned graph). An undirected, capacitated multi-graph G =
(V,E, c) with source s and sink t is s-t well-conditioned if, letting U denote the maximum edge
capacity U = ‖c‖∞, we have at least 2

3m multi-edges of capacity U going directly from s to t.

Remark 1.12. It is straightforward to make a graph s-t well-conditioned. We just add 2m new
edges of capacity U directly between s and t. Given an exact maximum flow in the new graph, it
is trivial to get one in the original graph: Just remove the flow on the new edges.

Definition 1.13. Given a directed graph G = (V,E, c), the symmetrization of G is the undirected
Ĝ = (V, Ê, ĉ) is the undirected graph given by

{a, b} ∈ Ê if (a, b) ∈ E AND (b, a) ∈ E

and
ĉ({a, b}) = min(c(a, b), c(b, a)).

Note that when Ĝf is the symmetrization of the residual graph Gf (which we define in Lecture 10),
then ĉ matches exactly the definition of ĉ in Equation (11).

Lemma 1.14. Let G be an undirected, capacitated multi-graph G = (V,E, c) which is s-t well-
conditioned. Let f be the minimizer of Program (2). Let Ĝf be the symmetrization of the residual

graph Gf (in the sense of Lecture 10). Then there exists a flow δ̂ which satisfies B δ̂ = 1−α
5 F ∗bst

and is feasible in Ĝf . Note that we can also state the feasibility in Ĝf as∥∥∥∥−−−−−−−−→(
δ̂(e)/ĉ(e)

)∥∥∥∥
∞
≤ 1
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Proof. We recall since f is the minimizer of Program (2), there exists dual-optimal voltages x such
that

B>x = ∇V (f ) =

−−−−−−−−−−−−−−−−−−−−−−→(
1

c(e)− f (e)
− 1

c(e) + f (e)

)
From Lecture 10, we know that there is flow δ̄ that is feasible with respect to the residual graph
capacities of the graph Gf such that B δ̄ = (1 − α)F ∗bst. Note when treating δ̄ as an undirected
flow, feasibility in the residual graph means that δ̄(e) < c(e)−f (e) and −δ̄(e) < c(e)+f (e). Thus,

(1− α)F ∗b>stx = δ̄B>x =
∑
e

δ̄

c(e)− f (e)
− δ̄

c(e) + f (e)
≤ m

Now, because the graph is s-t well-conditioned, there are at 2
3m edges directly from s to t with

capacity U and each of these e satisfy by the Lagrangian gradient optimality condition (4)

b>stx =
1

U − f (e)
− 1

U + f (e)

Note that 2
3mU ≤ F ∗ ≤ mU because the graph is s-t well-conditioned. To complete the analysis,

we consider three cases.

Case 1: |f (e)| ≤ 2
3U . Then the capacity on each of these edges in the symmetrized residual graph

Ĝf is at least U/3. As there are 2
3m of them, we get that there is a feasible flow in Ĝf of value at

least 2
9mU ≥

1
10F

∗.

Case 2: f (e) < −2
3U . By the gradient condition, we have the same flow on all of the 2

3m s-t edges,
adding up to at least 2

3mU going from t to s. This means that we must have at least 2
3mU flow

going from s to t via the remaining edges. But, their combined capacity is at most 1
3mU , so that

cannot happen. Thus we can rule out this case entirely.

Case 3: f (e) > 2
3U . Then

m

(1− α)F ∗
≥ b>stx ≥

1

U − f (e)
− 1

U + f (e)
≥ 4/5

U − f (e)

So

U − f (e) ≥ 4

5

(1− α)F ∗

m
≥ 1

2
(1− α)U

In this case, the capacity on each of the 2
3m s-t edges with capacity U in G will have capacity

(1−α)U/2 in Ĝf . This guarantees that there is feasible flow in Ĝf of value at least 1
3(1−α)mU ≥

1
3(1− α)F ∗.

Lemma 1.15. Let 0 < α′ ≤ 1−α
150
√
m

. Then the minimizer δ∗ of Problem (10) satisfies∥∥∥−−−−−−−−→(δ∗(e)/ĉ(e))
∥∥∥
∞
< 0.1.

Proof. By Lemma 1.14, there exists a flow δ̂ which satisfies B δ̂ = 1−α
5 F ∗bst and∥∥∥∥−−−−−−−−→(

δ̂(e)/ĉ(e)
)∥∥∥∥
∞
≤ 1. Hence for any 0 < α′ ≤ 1−α

150
√
m

, the flow δ̃ = α′ 5
1−α δ̂ satisfies B δ̃ = α′F ∗bst
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and

∥∥∥∥−−−−−−−−→(
δ̃(e)/ĉ(e)

)∥∥∥∥
∞
≤ 1

30
√
m

. This means that

D̃V (δ̃) =
∑
e

D̃

(
δ̃(e)

c+(e)

)
+ D̃

(
− δ̃(e)

c−(e)

)

≤
∑
e

4

(
δ̃(e)

c+(e)

)2

+ 4

(
− δ̃(e)

c−(e)

)2

≤
∑
e

8

(
δ̃(e)

ĉ(e)

)2

≤ 8/900 < 1/100.

This then means that the minimizer δ∗ of Problem (10) also satisfies D̃V (δ̃) < 1/100.

∥∥∥−−−−−−→(δ∗/ĉ(e))
∥∥∥2
∞
≤
∑
e

(
δ∗(e)

c+(e)

)2

+

(
− δ∗(e)

c−(e)

)2

≤
∑
e

D̃

(
δ∗(e)

c+(e)

)
+ D̃

(
− δ∗(e)

c−(e)

)
By Lemma 1.6.

= D̃V (δ̃) < 1/100.

Hence
∥∥∥−−−−−−→(δ∗/ĉ(e))

∥∥∥
∞
< 0.1.
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