
Advanced Graph Algorithms and Optimization Spring 2020

Convexity and Second Derivatives, Gradient Descent and Acceleration

Rasmus Kyng Lecture 3 — Monday, March 4th

In the lecture today, we didn’t cover accelerated gradient descent. We’ll do that next week instead.

Notation for this lecture. In this lecture, we sometimes consider a multivariate functions f
whose domain is a set S ⊆ Rn, which we will require to be open. When we additionally require
that S is convex, we will specify this. Note that S = Rn is both open and convex and it suffices
to keep this case in mind. Things sometimes get more complicated if S is not open, e.g. when the
domain of f has a boundary. We will leave those complications for another time.

1 A Review of Linear Algebra from the Previous Lecture

Semi-definiteness of a matrix. The following classification of symmetric matrices will be useful.

Definition 1.1. Let A by a symmetric matrix in Rn×n. We say that A is:

1. positive definite iff x>Ax > 0 for all x ∈ Rn \ {0};

2. positive semidefinite iff x>Ax ≥ 0 for all x ∈ Rn;

3. If neither A nor −A is positive semi-definite, we say that A is indefinite.

Example: indefinite matrix. Consider the following matrix A:

A :=

[
+4 −1
−1 −2

]

For x =

(
1
0

)
, we have x>Ax = 4 > 0. For x =

(
0
1

)
we have x>Ax = −2 < 0. A is therefore

indefinite.

In the previous lecture, we saw the Courant-Fischer theorem:

Theorem 1.2 (The Courant-Fischer Theorem). Let A be a symmetric matrix in Rn×n, with eigen-
values λ1 ≤ λ2 ≤ . . . ≤ λn. Then

1.

λi = min
subspace W⊆Rn

dim(W)=i

max
x∈W,x 6=0

x>Ax

x>x

2.

λi = max
subspace W⊆Rn

dim(W)=n+1−i

min
x∈W,x 6=0

x>Ax

x>x

1

The following theorem gives a useful characterization of (semi)definite matrices.

Theorem 1.3. Let A be a symmetric matrix in Rn×n.

1. A is positive definite iff all its eigenvalues are positive;

2. A is positive semidefinite iff all its eigenvalues are non-negative;

Theorem 1.3 follows immediately from the Courant-Fischer theorem.

Example: a positive semidefinite matrix. Consider the following matrix A:

A :=

[
1 −1
−1 1

]
For x =

(
1
1

)
, we have Ax = 0, so λ = 0 is an eigenvalue of A. For x =

(
1
−1

)
, we have

Ax =

(
2
−2

)
= 2x , so λ = 2 is the other eigenvalue of A. As both are non-negative, by the

theorem above, A is positive semidefinite.

Since we are learning about symmetric matrices, there is one more fact that everyone should know
about them. We’ll use λmax(A) denote maximum eigenvalue of a matrix A, and λmin(A) the
minimum.

Claim 1.4. For a symmetric matrix A ∈ Rn×n, ‖A‖ = max(|λmax(A)| , |λmin(A)|).

2 Characterizations of Convexity and Optimality via Second
Derivatives

We will now use the second derivatives of a function to obtain characterizations of convexity and
optimality. We will begin by introducing the Hessian, the matrix of pairwise second derivatives of
a function. We will see that it plays a role in approximating a function via a second-order Taylor
expansion. We will then use semi-definiteness of the Hessian matrix to characterize both conditions
of optimality as well as the convexity of a function.

Definition 2.1. Given a function f : S → R its Hessian matrix at point x ∈ S denoted Hf (x)
(also sometimes denoted ∇2f(x)) is:

Hf (x) :=

∂2f(x)
∂x (1)2

∂2f(x)
∂x (1)∂x (2) . . . ∂2f(x)

∂x (1)∂x (n)
∂2f(x)

∂x (2)∂x (1)
∂2f(x)
∂x (2)2

. . . ∂2f(x)
∂x (2)∂x (n)

...
...

. . .
...

∂2f(x)
∂x (n)∂x (1)

∂2f(x)
∂x (n)∂x (2) . . . ∂2f(x)

∂x (n)2

2

Second-order Taylor expansion. When f is twice differentiable it is possible to obtain an
approximation of f by quadratic functions. Our definition of f : S → R being twice (Fréchet)
differentiable at x ∈ S is that there exists ∇f(x) ∈ Rn and Hf (x) ∈ Rn×n s.t.

lim
δ→0

∥∥f(x + δ)− f(x)−
(
∇f(x)>δ + 1

2δ
>Hf (x)δ

)∥∥
2

‖δ‖22
= 0.

This is equivalent to saying that for all δ

f(x + δ) = f(x) + ∇f(x)>δ +
1

2
δ>Hf (x)δ + o(‖δ‖22).

where by definition:

lim
δ→0

o(‖δ‖2)
‖δ‖22

= 0

We say that f is continuously differentiable on a set S ⊆ Rn if it is twice differentiable and in
addition the gradient and Hessian are continuous on S.

As for first order expansions, we have a Taylor’s Theorem, which we state in the so-called remainder
form.

Theorem 2.2 (Taylor’s Theorem, multivariate second-order remainder form). If f : S → R is
twice continuously differentiable over [x ,y], then for some z ∈ [x ,y],

f(y) = f(x) + ∇f(x)>(y − x) +
1

2
(y − x)>Hf (z)(y − x)

2.1 A necessary condition for local extrema

Recall that in the previous lecture, we show the following proposition.

Proposition 2.3. If x is a local extremum of a differentiable function f : S → R then ∇f(x) = 0.

We can now give the second-order necessary conditions for local extrema via the Hessian.

Theorem 2.4. Let f : S → R be a function twice differentiable at x ∈ S. If x is a local minimum,
then Hf (x) is positive semidefinite.

Proof. Let us assume that x is a local minimum. We know from Proposition 2.3 that ∇f(x) = 0,
hence the second-order expansion at x takes the form:

f(x + λd) = f(x) + λ2
1

2
d>Hf (x)d + o(λ2 ‖d‖22)

Because x is a local minimum, we can then derive

0 ≤ lim
λ→0+

f(x + λd)− f(x)

λ2
=

1

2
d>Hf (x)d

This is true for any d , hence Hf (x) is positive semidefinite.

Remark 2.5. Again, for this proposition to hold, it is important that S is open.

3

2.2 A sufficient condition for local extrema

A local minimum thus is a stationary point and has a positive semi-definite Hessian. The converse
is almost true, but we need to strengthen the Hessian condition slightly.

Theorem 2.6. Let f : S → R be a function twice differentiable at a stationary point x ∈ S. If
Hf (x) is positive definite then x is a local minimum.

Proof. Let us assume that Hf (x) is positive definite. We know that x is a stationary point. We
can write the second-order expansion at x :

f(x + δ) = f(x) +
1

2
δ>Hf (x)δ + o(‖δ‖22)

Because the Hessian is positive definite, it has a strictly positive minimum eigenvalue λmin, we can
conclude that δ>Hf (x)δ ≥ λmin ‖δ‖22. From this, we conclude that when ‖δ‖22 is small enough,
f(x + δ)− f(x) ≥ 1

4λmin ‖δ‖22 > 0. This proves that x is a local minimum.

Remark 2.7. When Hf (x) is indefinite at a stationary point x , we have what is known as a
saddle point : x will be a minimum along the eigenvectors of Hf (x) for which the eigenvalues are
positive and a maximum along the eigenvectors of Hf (x) for which the eigenvalues are negative.

2.3 Characterization of convexity

Definition 2.8. For a convex set S ⊆ Rn, we say that a function f : S → R is strictly convex
on S if for any two points x 1,x 2 ∈ S and any θ ∈ (0, 1) we have that:

f (θx 1 + (1− θ)x 2) < θf(x 1) +
(

1− θ
)
f(x 2).

Theorem 2.9. Let S ⊆ Rn be open and convex, and let f : S → R be twice continuously differen-
tiable.

1. If Hf (x) is positive semi-definite for any x ∈ S then f is convex on S.

2. If Hf (x) is positive definite for any x ∈ S then f is strictly convex on S.

3. If f is convex, then Hf (x) is positive semi-definite ∀x ∈ S.

Proof.

1. By applying Theorem 2.2, we find that for some z ∈ [x ,y]:

f(y) = f(x) + ∇f(x)>(y − x) +
1

2

(
(y − x)>Hf (z)(y − x)

)
If Hf (z) is positive semi-definite, this necessarily implies that:

f(y) ≥ f(x) + ∇f(x)>(y − x)

and from Theorem 3.5 we get that f is convex.

4

2. if Hf (x) is positive definite, we have that:

f(y) > f(x) + ∇f(x)>(y − x).

Applying the same idea as in Theorem 3.5 we can show that in this case f is strictly convex.

3. Let f be a convex function. For x ∈ S, and some small λ > 0, for any d ∈ Rn we have that
x + λd ∈ S. From the Taylor expansion of f we get:

f(x + λd) = f(x) + λ∇f(x)>d +
λ2

2
d>Hf (x)d + o(λ2 ‖d‖22).

From Lemma 3.5 we get that if f is convex then:

f(x + λd) ≥ f(x) + λ∇f(x)>d.

Therefore, we have that for any d ∈ Rn:

λ2

2
d>Hf (x)d + o(||λd||2) ≥ 0

Dividing by λ2 and taking λ→ 0+ gives us that for any d ∈ Rn: d>Hf (x)d ≥ 0.

Remark 2.10. It is important to note that if S is open and f is strictly convex, then Hf (x) may
still (only) be positive semi-definite ∀x ∈ S. Consider f(x) = x4 which is strictly convex, then the
Hessian is Hf (x) = 12x2 which equals 0 at x = 0.

3 Gradient Descent - An Approach to Optimization?

We have begun to develop an understanding of convex functions, and what we have learned already
suggests a way for us to try to find an approximate minimizer of a given convex function.

Suppose f : Rn → R is convex and differentiable, and we want to solve

min
x∈Rn

f(x)

We would like to find x ∗, a global minimizer of f . Suppose we start with some initial guess x 0, and
we want to update it to x 1 with f(x 1) < f(x 0). If we can repeatedly make updates like this, maybe
we eventually find a point with nearly minimum function value, i.e. some x̃ with f(x̃) ≈ f(x ∗)?

Recall that f(x 0 + δ) = f(x 0) + ∇f(x 0)
>δ + o(‖δ‖2). This means that if we choose

x 1 = x 0 − λ∇f(x 0), we get

f(x 0 + δ) = f(x 0)− λ ‖∇f(x 0)‖22 + o(λ ‖∇f(x 0)‖2)

And because f is convex, we know that ∇f(x 0) 6= 0 unless we are already at a global minimum.
So, for some small enough λ > 0, we should get f(x 1) < f(x 0) unless we’re already at a global
minimizer. This idea of taking a step in the direction of −∇f(x 0) is what is called Gradient
Descent. But how do we choose λ each time? And does this lead to an algorithm that quickly
reaches a point with close to minimal function value? To get good answers to these questions, we
need to assume more about the function f that we are trying to minimize.

In the following subsection, we will see some conditions that suffice. But there are also many other
settings where one can show that some form of gradient descent converges.

5

3.1 A Quantitative Bound on Changes in the Gradient

Definition 3.1. Let f : S → R be a differentiable function, where S ⊆ Rn is convex and open.
We say that f is β-gradient Lipschitz iff for all x ,y ∈ S

‖∇f(x)−∇f(y)‖2 ≤ β ‖x − y‖2 .

We also refer to this as f being β-smooth.

Proposition 3.2. Consider a twice differentiable f : S → R. Then f is β-gradient Lipschitz if
and only if for all x ∈ S (except a measure zero set), λmax(Hf (x)) ≤ β.

You will prove this in Exercise 1 of this week’s exercises.

Proposition 3.3. Let f : S → R be a β-gradient Lipschitz function. Then for all x ,y ∈ S,

f(y) ≤ f(x) + ∇f(x)>(y − x) +
β

2
‖x − y‖22

To prove this proposition, we need the following result from multi-variate calculus. This is a
restricted form of the fundamental theorem of calculus for line integrals.

Proposition 3.4. Let f : S → R be a differentiable function, and consider x ,y such that [x ,y] ∈ S.
Let x θ = x + θ(y − x). Then

f(y) = f(x) +

∫ 1

θ=0
∇f(x θ)

>(y − x)dθ

Now, we’re in a position to show Proposition 3.3

Proof of Proposition 3.3. Let f : S → R be a β-gradient Lipschitz function. Consider arbitrary
x ,y ∈ S such that [x ,y] ∈ S

f(y) = f(x) +

∫ 1

θ=0
∇f(x θ)

>(y − x)dθ

= f(x) +

∫ 1

θ=0
∇f(x)>(y − x)dθ +

∫ 1

θ=0
(∇f(x θ)−∇f(x))>(y − x)dθ

Next we use Cauchy-Schwarz pointwise.

We also evaluate the first integral.

≤ f(x) + ∇f(x)>(y − x) +

∫ 1

θ=0
‖∇f(x θ)−∇f(x)‖ ‖y − x‖ dθ

Then we apply β-gradient Lipschitz and note x θ − x = θ(y − x).

≤ f(x) + ∇f(x)>(y − x) +

∫ 1

θ=0
βθ ‖y − x‖2 dθ.

= f(x) + ∇f(x)>(y − x) +
β

2
‖y − x‖2 .

6

3.2 Analyzing Gradient Descent

It turns out that just knowing a function f : Rn → R is convex and β-gradient Lipschitz is enough
to let us figure out a reasonable step size for Gradient Descent and let us analyze its convergence.

We start at a point x 0 ∈ Rn, and we try to find a point x 1 = x 0 + δ with lower function value.
We will let our upper bound from Proposition 3.3 guide us, in fact, we could ask, what is the best
update for minimizing this upper bound, i.e. a δ solving

min
δ∈Rn

f(x 0) + ∇f(x 0)
>δ +

β

2
‖δ‖2

We can compute the best according to this upper bound by noting first that function is convex
and continuously differentiable, and hence will be minimized at any point where the gradient is

zero. Thus we want 0 = ∇δ

(
f(x 0) + ∇f(x 0)

>δ + β
2 ‖δ‖

2
)

= ∇f(x 0) + βδ, which occurs at

δ = − 1
β∇f(x 0).

Plugging in this value into the upper bound, we get that f(x 1) ≤ f(x 0)− ‖∇f(x0)‖22/2β.

Now, as our algorithm, we will start with some guess x 0, and then at every step we will update
our guess using the best step based on our Proposition 3.3 upper bound on f at x i, and so we get

x i+1 = x i −
1

β
∇f(x i) and f(x i+1) ≤ f(x i)−

‖∇f(x i)‖22
2β

. (1)

Let us try to prove that our algorithm converges toward an x with low function value.

We will measure this by looking at

gapi = f(x i)− f(x ∗)

where x ∗ is a global minimizer of f (note that there may not be a unique minimizer of f). We will
try to show that this function value gap grows small. Using f(x i+1) − f(x i) = gapi+1 − gapi, we
get

gapi+1 − gapi ≤ −
‖∇f(x i)‖22

2β
(2)

If the gapi value is never too much bigger than
‖∇f(x i)‖22

2β , then this should help us show we are
making progress. But how much can they differ? We will now try to show a limit on this.

Recall that in the previous lecture we showed the following theorem.

Theorem 3.5. Let S be an open convex subset of Rn, and let f : S → R be a differentiable function.
Then, f is convex if and only if for any x ,y ∈ S we have that f(y) ≥ f(x) + ∇f(x)>(y − x).

Using the convexity of f and the lower bound on convex functions given by Theorem 3.5, we have
that

f(x ∗) ≥ f(x i) + ∇f(x i)
>(x ∗ − x i) (3)

7

Rearranging gets us

gapi ≤∇f(x i)
>(x i − x ∗) (4)

≤ ‖∇f(x i)‖2 ‖x i − x ∗‖2 by Cauchy-Schwarz.

At this point, we are essentially ready to connect Equation (2) with Equation (4) and analyze the
convergence rate of our algorithm.

However, at the moment, we see that the change gapi+1− gapi in how close we are to the optimum
function value is governed by the norm of the gradient ‖∇f(x i)‖2, while the size of the gap is
related to both this quantity and the distance ‖x i − x ∗‖2 between the current solution x i and an
optimum x ∗. Do we need both or can we get rid of, say, the distance? Unfortunately, with this
algorithm and for this class of functions, a dependence on the distance is necessary. However,
we can simplify things considerably using the following observation, which you will prove in the
exercises (Exercise 2):

Claim 3.6. When running Gradient Descent as given by the step in Equation (1), for all i
‖x i − x ∗‖2 ≤ ‖x 0 − x ∗‖2.

Combining this Claim with Equation (2) and Equation (4),

gapi+1 − gapi ≤ −
1

2β
·
(

gapi
‖x 0 − x ∗‖2

)2

(5)

At this point, a simple induction will complete the proof of following result.

Theorem 3.7. Let f : Rn → R be a β-gradient Lipschitz, convex function. Let x 0 be a given
starting point, and let x ∗ ∈ arg minx∈Rn f(x) be a minimizer of f . The Gradient Descent algorithm
given by

x i+1 = x i −
1

β
∇f(x i)

ensures that the kth iterate satisfies

f(x k)− f(x ∗) ≤
2β ‖x 0 − x ∗‖22

k + 1
.

Carrying out this induction is one of this week’s exercises (Exercise 3).

4 Accelerated Gradient Descent

It turns out that we can get an algorithm that converges substantially faster than Gradient
Descent, using an approach known as Accelerated Gradient Descent, which was developed by
Nesterov [Nes83]. This algorithm in turn improved on some earlier results by Nemirovski and
Yudin [NY83]. The phenomenon of acceleration was perhaps first understood in the context of
quadratic functions, minimizing x>Ax − x>b when A is positive definite – for this case, the Con-
jugate Gradient algorithm was developed independently by Hestenes and Stiefel [HS+52] (here at
ETH!), and by Lanczos [Lan52]. In the past few years, providing more intuitive explanations of

8

acceleration has been a popular research topic. Today’s lecture is based on an analysis of Nesterov’s
algorithm developed by Diakonikolas and Orecchia [DO19].

We will adopt a slightly different approach to analyzing this algorithm than what we used in the
previous section for Gradient Descent.

We will use x 0 to denote the starting point of our algorithm, and we will produce a sequence of
iterates x 0,x 1,x 2, . . . ,x k. At each iterate x i, we will compute the gradient ∇f(x i). However, the
way we choose x i+1 based on what we know so far will now be a little more involved than what we
did for Gradient Descent.

To help us understand the algorithm, we are going to introduce two more sequences of iterates
y0,y1,y2, . . . ,yk ∈ Rn and v0, v1, v2, . . . , vk ∈ Rn.

The sequence of y i’s will be constructed to help us get as low a function value as possible at f(y i),
which we will consider our current solution and the last iterate yk will be the output solution of
our algorithm.

The sequence of v i’s will be constructed to help us get a lower bound on f(x ∗).

By combining the upper bound on the function value of our current solution f(y i) with a lower
bound on the function value at an optimal solution f(x ∗), we get an upper bound on the gap
f(y i) − f(x ∗) between the value of our solution and the optimal one. Finally, each iterate x i,
which will be where we evaluate gradient ∇f(x i), is chosen through a trade-off between wanting
to reduce the upper bound and wanting to increase the lower bound.

The upper bound sequence: y i’s. The point y i will be chosen from x i to minimize an upper
bound on f based at x i. This is similar to what we did in the previous section. We let y i = x i+δi
and use choose δi to minimize the upper bound f (y i) ≤ f(x i) +∇f(x i)

>δi + β
2 ‖δi‖

2, which gives
us

y i = x i −
1

β
∇f(x i) and f(y i) ≤ f(x i)−

‖∇f(x i)‖22
2β

.

We will introduce a notation for this upper bound

Ui = f(y i) ≤ f(x i)−
‖∇f(x i)‖22

2β
. (6)

Philosophizing about lower bounds1. A crucial ingredient to establishing an upper bound on
gapi was a lower bound on f(x ∗).

In our analysis of Gradient Descent, in Equation (4), we used the lower bound
f(x ∗) ≥ f(x i)− ‖∇f(x i)‖2 ‖x i − x ∗‖2. We can think of the Gradient Descent analysis as be-
ing based on a tension between two statements: Firstly that “a large gradient implies we quickly
approach the optimum” and secondly “the function value gap to optimum cannot exceed the mag-
nitude of the current gradient (scaled by distance to opt)”.

1YMMV. People have a lot of different opionions about how to understand acceleration, and you should take my
thoughts with a grain of salt.

9

This analysis does not use that we have seen many different function values and gradients, and each
of these can be used to construct a lower bound on the optimum value f(x ∗), and, in particular, it
is not clear that the last gradient provides the best bound. To do better, we will try to use lower
bounds that take advantage of all the gradients we have seen.

Definition 4.1. We will adopt a new notation for inner products that sometimes is more con-

venient when dealing with large expressions: 〈aaa, b〉 def= aaa>b.

The lower bound sequence: v i’s. We can introduce weights ai > 0 for each step and combine
the gradients we have observed into one lower bound based on a weighted average. Let us use
Ai =

∑
j≤i aj to denote the sum of the weights. Now a general lower bound on the function value

at any v ∈ Rn is :

f(v) ≥ 1

Ai

∑
j≤i

aj (f(x j) + 〈∇f(x j), v − x j〉)

However, to use Cauchy-Schwarz on each individual term here to instantiate this bound at x ∗ does
not give us anything useful. Instead, we will employ a somewhat magical trick: we introduce a
regularization term

φ(v)
def
=

σ

2
‖v − x 0‖22 .

We will choose the value σ > 0 later. Now we derive our lower bound Li

f(x ∗) ≥ 1

Ai

φ(x ∗) +
∑
j≤i

ajf(x j) + 〈aj∇f(x j),x
∗ − x j〉

− φ(x ∗)

Ai

≥ min
v∈Rn

 1

Ai

φ(v) +
∑
j≤i

ajf(x j) + 〈aj∇f(x j), v − x j〉

− φ(x ∗)

Ai

= Li

We will let v i be the v obtaining the minimum in the optimization problem appearing in the
definition of Li, so that

Li =
1

Ai

φ(v i) +
∑
j≤i

aif(x i) + 〈ai∇f(x i), v i − x i〉

− φ(x ∗)

Ai

How we will measure convergence. We have designed the upper bound Ui and the lower
bound Li such that gapi = f(y i)− f(x ∗) ≤ Ui − Li.

As you will show in Exercise 3, we can prove the convergence of Gradient Descent directly by an
induction that establishes 1/gapi ≤ C · i for some constant C depending on the Lipschitz gradient
parameter β and the distance ‖x 0 − x ∗‖2.

To analyze Accelerated Gradient Descent, we will adopt a similar, but slightly different strategy,
namely trying to show that (Ui − Li)r(i) is non-increasing for some positive “rate function” r(i).
Ideally r(i) should grow quickly, which would imply that gapi quickly gets small. We will also need

10

to show that (U0−L0)r(0) ≤ C for some constant C again depending on β and ‖x 0 − x ∗‖2. Then,
we’ll be able to conclude that

gapi · r(i) ≤ (Ui − Li)r(i) ≤ (Ui−1 − Li−1)r(i− 1) ≤ · · · ≤ (U0 − L0)r(0) ≤ C,

and hence gapi ≤ C/r(i).

This framework is fairly general. We could have also used it to analyze Gradient Descent, and it
works for many other optimization algorithms too.

We are going to choose our rate function r(i) to be exactly Ai, which of course is no accident! As
we will see, this interacts nicely with our lower bound Li. Hence, our goals are to

1. provide an upper bound on A0(U0 − L0),

2. and show that Ai+1(Ui+1 − Li+1) ≤ Ai(Ui − Li),

Establishing the convergence rate. Let’s start by looking at the change in the upper bound
scaled by our rate function:

Ai+1Ui+1 −AiUi =Ai+1

(
f(y i+1)− f(x i+1)

)
−Ai (f(y i)− f(x i+1)) + (Ai+1 −Ai)f(x i+1) (7)

≤Ai+1

(
−
‖∇f(x i+1)‖22

2β

)
First term controlled by Equation (6).

+Ai 〈∇f(x i+1),y i − x i+1〉 Second term bounded by Theorem 3.5.

+ ai+1f(x i+1) Third term uses ai+1 = Ai+1 −Ai.

The solution v i to the minimization in the lower bound Li turns out to be relatively simple to
characterize. By using derivatives to find the optimum, we first analyze the initial value of the
lower bound L0.

Claim 4.2.

1. v0 = x 0 − a0
σ ∇f(x 0)

2. L0 = f(x 0)− a0
2σ ‖∇f(x 0)‖22 −

σ
2a0
‖x ∗ − x 0‖22.

You will prove Claim 4.2 in next week’s exercises (postponed from this week, because we didn’t end
up covering accelerated gradient descent). Noting A0 = a0, we see from Equation (6) and Part 2
of Claim 4.2, that

A0(U0 − L0) ≤
(
a20
2σ
− a0

2β

)
‖∇f(x 0)‖22 +

σ

2
‖x ∗ − x 0‖22 (8)

It will be convenient to introduce notation for the rescaled lower bound AiLi without optimizing
over v .

mi(v) = φ(v)− φ(x ∗) +
∑
j≤i

ajf(x j) + 〈aj∇f(x j), v − x j〉

Thus AiLi−Ai+1Li+1 = mi(v i)−mi+1(v). Now, it is not too hard to show the following relation-
ships.

11

Claim 4.3.

1. mi(v) = mi(v i) + σ
2 ‖v − v i‖22

2. mi+1(v) = mi(v) + ai+1f(x i+1) + 〈ai+1∇f(x i+1), v − x i+1〉

3. v i+1 = v i − ai+1

σ ∇f(x i+1)

And again, you will prove Claim 4.3 in next week’s exercises (postponed from this week, because
we didn’t end up covering accelerated gradient descent). Hint for Part 1: note that mi(v) is a
quadratic function, miminimized at vi and its Hessian equals σI at all v.

Given Claim 4.3, we see that

AiLi −Ai+1Li+1 = mi(v i)−mi+1(v i+1) = −ai+1f(x i+1)− 〈ai+1∇f(x i+1), v i+1 − x i+1〉 −
σ

2
‖v i+1 − v i‖22

= −ai+1f(x i+1)− 〈ai+1∇f(x i+1), v i − x i+1〉+
a2i+1

2σ
‖∇f(x i+1)‖22
(9)

This means that by combining Equation (8) and (9) we get

Ai+1(Ui+1 − Li+1)−Ai(Ui − Li) ≤
(
−Ai+1

2β
+
a2i+1

2σ

)
‖∇f(x i+1)‖22 + 〈∇f(x i+1), Ai+1x i+1 − ai+1v i −Aiy i〉 .

Now, this means that Ai+1(Ui+1 − Li+1)−Ai(Ui − Li) ≤ 0 if

Ai+1x i+1 − ai+1v i −Aiy i = 0 and Ai+1/β ≥ a2i+1/σ

We can get this by letting x i+1 = Aiy i+ai+1v i

Ai+1
, and σ = β and ai = i+1

2 , which implies that

Ai = (i+1)(i+2)
4 < a2i .

By Equation (8), these parameter choices also imply that

A0(U0 − L0) ≤
β

2
‖x ∗ − x 0‖22 .

Finally, by induction, we get Ai(Ui − Li) ≤ β
2 ‖x

∗ − x 0‖22. Dividing through by Ai and using
gapi ≤ Ui − Li results in the following theorem.

Theorem 4.4. Let f : Rn → R be a β-gradient Lipschitz, convex function. Let x 0 be a given
starting point, and let x ∗ ∈ arg minx∈Rn f(x) be a minimizer of f .

The Accelerated Gradient Descent algorithm given by

ai =
i+ 1

2
, Ai =

(i+ 1)(i+ 2)

4

v0 = x 0 −
1

2β
∇f(x 0)

y i = x i −
1

β
∇f(x i)

12

x i+1 =
Aiy i + ai+1v i

Ai+1

v i+1 = v i −
ai+1

β
∇f(x i+1)

ensures that the kth iterate satisfies

f(x k)− f(x ∗) ≤
4β ‖x 0 − x ∗‖22
(k + 1)(k + 2)

.

References

[DO19] Jelena Diakonikolas and Lorenzo Orecchia. Conjugate gradients and accelerated methods
unified: The approximate duality gap view. arXiv preprint arXiv:1907.00289, 2019.

[HS+52] Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving
linear systems. Journal of research of the National Bureau of Standards, 49(6):409–436,
1952.

[Lan52] Cornelius Lanczos. Solution of systems of linear equations by minimized iterations. J.
Res. Nat. Bur. Standards, 49(1):33–53, 1952.

[Nes83] Y. E. Nesterov. A method for solving the convex programming problem with convergence
rate o(1/k2). Dokl. Akad. Nauk SSSR, 269:543–547, 1983.

[NY83] A Nemirovski and D Yudin. Information-based complexity of mathematical programming.
Izvestia AN SSSR, Ser. Tekhnicheskaya Kibernetika (the journal is translated to English
as Engineering Cybernetics. Soviet J. Computer & Systems Sci.), 1, 1983.

13

	A Review of Linear Algebra from the Previous Lecture
	Characterizations of Convexity and Optimality via Second Derivatives
	A necessary condition for local extrema
	A sufficient condition for local extrema
	Characterization of convexity

	Gradient Descent - An Approach to Optimization?
	A Quantitative Bound on Changes in the Gradient
	Analyzing Gradient Descent

	Accelerated Gradient Descent

