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Rasmus Kyng, Scribe: Hongjie Chen Lecture 6 — Wednesday, March 25th

1 What is a (Moore-Penrose) Pseudoinverse?

Recall that for a connected graph G with Laplacian L, we have ker(L) = span{1}, which means L
is not invertible. However, we still want some matrix which behaves like a real inverse. To be more
specific, given a Laplacian L ∈ RV×V , we want some matrix L+ ∈ RV×V s.t.

1) (L+)> = L+ (symmetric)

2) L+1 = 0, or more generally, L+v = 0 for v ∈ ker(L)

3) L+Lv = LL+v = v for v ⊥ 1, or more generally, for v ∈ ker(L)⊥

Under the above conditions, L+ is uniquely defined and we call it the pseudoinverse of L. Note
that there are many other equivalent definitions of the pseudoinverse of some matrix A, and we
can also generalize the concept to matrices that aren’t symmetric or even square.

Let λi, v i be the i-th pair of eigenvalue and eigenvector of L, with {v i}ni=1 forming a orthogonal
basis. Then by the spectral theorem,

L = V ΛV > =
∑
i

λiv iv
>
i ,

where V =
[
v1 · · · vn

]
and Λ = diag{λ1, ..., λn}. And we can show that its pseudoinverse is

exactly

L+ =
∑
i,λi 6=0

λ−1
i v iv

>
i .

Checking conditions 1), 2), 3) is immediate.

2 Electrical Flows Again

Recall the incidence matrix B ∈ RV×E of a graph G = (V,E).
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Figure 1: An example of a graph and its incidence matrix B.

In Lecture 1, we introduced the electrical flow routing demand d ∈ RV . Let’s call the electrical
flow f̃ ∈ RE . The net flow constraint requires Bf̃ = d . By Ohm’s Law, f̃ = R−1B>x for some
voltage x ∈ RV where R = diag(r) and r(e) = resistance of edge e. We showed (in the exercises)
that when d ⊥ 1, there exists an voltage x̃ ⊥ 1 s.t. f̃ = R−1B>x̃ and Bf̃ = d . This x̃ solves
Lx = d where L = BR−1B>.

And we also made the following claim.

Claim 2.1.
f̃ = arg min

Bf =d
f >Rf where f >Rf =

∑
e

r(e)f (e)2, (1)

But we didn’t prove this. Now, let’s prove it.

Proof. Consider any f ∈ RE s.t. Bf = d . For any x ∈ RV , we have

1

2
f >Rf =

1

2
f >Rf − x>(Bf − d︸ ︷︷ ︸

0

)

≥ min
f ∈RE

1

2
f >Rf − x>Bf + d>x︸ ︷︷ ︸

g(f )

= d>x − 1

2
x>Lx

since ∇f g(f ) = 0 gives us f = R−1B>x . Thus, for all f ∈ RE s.t. Bf = d and all x ∈ RV ,

1

2
f >Rf ≥ d>x − 1

2
x>Lx . (2)

But for the electrical flow f̃ and electrical voltage x̃ , we have f̃ = R−1B>x̃ and Lx̃ = d . So

f̃
>

Rf̃ =
(

R−1B>x̃
)>

R
(

R−1B>x̃
)

= x̃>BR−1B>x̃ = x̃>Lx̃ = x̃>d .

Therefore,
1

2
f̃
>

Rf̃ = d>x̃ − 1

2
x̃>Lx̃ . (3)
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By combining Equation (2) and Equation (3), we see that for all f s.t. Bf = d ,

1

2
f >Rf ≥ d>x̃ − 1

2
x̃>Lx̃ =

1

2
f̃
>

Rf̃ .

Thus f̃ is the minimum electrical energy flow among all flows that route demand d , proving
Equation (1) holds.

The drawing below shows how the quantities line up:

3 Effective Resistance

Given a graph G = (V,E), for any pair of vertices (a, b) ∈ V , we want to compute the cost (or
energy) of routing 1 unit of current from a to b. We call such cost the effective resistance between
a and b, denoted by Reff(a, b). Recall for a single resistor r(a, b),

energy = r(a, b)f2(a, b) = r(a, b).

So when we have a graph consisting of just one edge (a, b), the effective resistance is just Reff(a, b) =
r(a, b).

In a general graph, we can also consider the energy required to route one unit of current between
two vertices. For any pair a, b ∈ V , we have

Reff(a, b) = min
Bf =eb−ea

f >Rf .

Note that the cost of routing F units of flow from a to b will be Reff(a, b) · F 2.

Since (eb − ea)
>1 = 0, we know from the previous section that Reff(a, b) = f̃

>
Rf̃ where f̃ is the

electrical flow. Now we can write Lx̃ = eb − ea and x̃ = L+(eb − ea) for the electrical voltages
routing 1 unit of current from a to b. Now the energy of routing 1 unit of current from a to b is

Reff(a, b) = f̃
>

Rf̃ = x̃>Lx̃ = (eb − ea)
>L+LL+(eb − ea) = (eb − ea)

>L+(eb − ea),

where the last equality is due to L+LL+ = L+.
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Remark 3.1. We have now seen several different expressions that all take on the same value: the
energy of the electrical flow. It’s useful to remind yourself what these are. Consider an electrical
flow f̃ routes demand d , and associated electrical voltages x̃ . We know that Bf̃ = d , and
f = R−1B>x̃ , and Lx̃ = d , where L = BR−1B>. And we have seen how to express the electrical
energy using many different quantities:

f̃
>

Rf̃ = x̃>Lx̃ = d>L+d = d>x̃ = f̃
>

B>x̃

Claim 3.2. Any PSD matrix A has a PSD square root A1/2 s.t. A1/2A1/2 = A.

Proof. By the spectral theorem, AA =
∑

i λiv iv
>
i where {v i} are orthonormal. Let A1/2 =∑

i λ
1/2
i v iv

>
i . Then

A1/2A1/2 =

(∑
i

λ
1/2
i v iv

>
i

)2

=
∑
i

λiv iv
>
i v iv

>
i +

∑
i 6=j

λiv iv
>
i v jv

>
j

=
∑
i

λiv iv
>
i

where the last equality is due to v>i v j = δij . It’s easy to see that A1/2 is also PSD.

Let L+/2 be the square root of L. So

Reff(a, b) = (eb − ea)
>L+(eb − ea) = ‖L+/2(eb − ea)‖2.

Example: Effective resistance in a path. Consider a path graph on vertices V =
{1, 2, 3, . . . , k + 1}, with with resistances r(1), r(2), . . . , r(k) on the edges of the path.

Figure 2: A path graph with k edges.

The effective resistance between the endpoints is

Reff(1, k + 1) =

k∑
i=1

r(i)

To see this, observe that to have 1 unit of flow going from vertex 1 to vertex k + 1, we must have
one unit flowing across each edge i. Let ∆(i) be the voltage difference across edge i, and f (i) the
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flow on the edge. Then 1 = f (i) = ∆(i)
r(i) , so that ∆(i) = r(i). The electrical voltages are then

x̃ ∈ RV where x̃ (i) = x̃ (1) +
∑

j<i ∆(j). Hence the effective resistance is

Reff(1, k + 1) = d>x̃ = (ek+1 − e1)>x̃ = x̃ (k + 1)− x̃ (1) =
k∑
i=1

r(i).

This behavior is sometimes known as the fact that the resistance of resistors adds up when they
are connected in series.

Example: Effective resistance of parallel edges. So far, we have only considered graphs
with at most one edge between any two vertices. But that math also works if we allow a pair of
vertices to have multiple distinct edges connecting them. We refer to this as multi-edges. Suppose
we have a graph on just two vertices, V = {1, 2}, and these are connected by k parallel multi-edges
with resistances r(1), r(2), . . . , r(k).

Figure 3: A graph on just two vertices with k parallel multiedges.

The effective resistance between the endpoints is

Reff(1, 2) =
1∑k

i=1 1/r(i)
.

Let’s see why. Our electrical voltages x̃ ∈ RV can be described by just the voltage difference ∆ ∈ R
between vertex 1 and vertex 2, i.e. x̃ (2)−x̃ (1) = ∆. which creates a flow on edge i of f̃ (i) = ∆/r(i).
Thus the total flow from vertex 1 to vertex 2 is 1 =

∑
i ∆/r(i), so that ∆ = 1∑k

i=1 1/r(i)
. Meanwhile,

the effective resistance is also

Reff(1, 2) = (e2 − e1)>x̃ = ∆ =
1∑k

i=1 1/r(i)
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3.1 Effective Resistance is a Distance

Definition 3.3. Consider a weighted undirected graph G with vertex set V . We say function
d : V ×V → R, which takes a pair of vertices and returns a real number, is a distance if it satisfies

1. d(a, a) = 0 for all a ∈ V

2. d(a, b) ≥ 0 for all a, b ∈ V .

3. d(a, b) = d(b, a) for all a, b ∈ V .

4. d(a, b) ≤ d(a, c) + d(c, b) for all a, b, c ∈ V .

Lemma 3.4. Reff is a distance.

Before proving this lemma, let’s see a claim that will help us finish the proof.

Claim 3.5. Let Lx̃ = eb − ea. Then for all c ∈ V , we have x̃ (b) ≥ x̃ (c) ≥ x̃ (a).

We only sketch a proof of this claim:

Proof sketch. Consider any c ∈ V , where c 6= a, b. Now (Lx̃ )(c) = 0, i.e.∑
(u,c)

w(u, c)

 x̃ (c)−

∑
(u,c)

w(u, c)x̃ (u)

 = 0

Rearranging x̃ (c) =
∑

(u,c) w(u,c)x̃ (u)∑
(u,c) w(u,c) . This tells us that x̃ (c) is a weighted average of the voltages of

its neighbors. From this, we can show that x̃ (a) and x̃ (b) are the extreme values.

Proof. It is easy to check that conditions 1, 2, and 3 of Definition 3.3 are satisfied by Reff. Let us
confirm condition 4.

For any u, v, let x̃u,v = L+(−eu + ev). Then

x̃ a,b = L+(−ea + eb) = L+(−ea + ec − ec + eb) = x̃ a,c + x̃ c,b.

Thus,

Reff(a, b) = (−ea + eb)
>x̃ a,b = (−ea + eb)

>(x̃ a,c + x̃ c,b)

= −x̃ a,c(a) + x̃ a,c(b)− x̃ c,b(a) + x̃ c,b(b)

= −x̃ a,c(a) + x̃ a,c(c)− x̃ c,b(c) + x̃ c,b(b).

where in the last line we applied Lemma 3.5 to show that x̃ a,c(b) ≤ x̃ a,c(c) and −x̃ c,b(a) ≤ −x̃ c,b(c).
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4 An Optimization Perspective on Gaussian Elimination for
Laplacians

In this section, we will explore how to exactly minimize a Laplacian quadratic form by minimizing
over one variable at a time. It turns out that this is in fact Gaussian Elimination in disguise –
or, more precisely, the variant of Gaussian elimination that we tend to use on symmetric matrices,
which is called Cholesky factorization.

Consider a Laplacian L of a connected graph G = (V,E,w), where w ∈ RE is a vector of positive
edge weights. Let W ∈ RE×E be the diagonal matrix with the edge weights on the diagonal, i.e.
W = diag(w) and L = BW B>. Let d ∈ RV be a demand vector s.t. d ⊥ 1.

Let us define an energy

E(x ) = −d>x +
1

2
x>Lx

Note that this function is convex and is minimized at x s.t. Lx = d .

We will now explore an approach to solving the minimization problem

min
x∈RV

E(x )

Let x =

(
y
z

)
where y ∈ R and z ∈ RV \{1}.

We will now explore how to minimize over y, given any z . Once we find an expression for y in
terms of z , we will be able to reduce will result in new quadratic minimization problem in z ,

E ′(z ) = −d ′>z +
1

2
z>L′z

where d ′ is a demand vector on the remaining vertices, with d ⊥ 1 and L′ is a Laplacian of a graph
on the remaining vertices V ′ = V \ {1}. We can then repeat the procedure to eliminate another
variable and so on. Eventually, we can then find all the solution to our original minimization
problem.

To help us understand how to mimize over the first variable, we introduce some notation for the
first row and column of the Laplacian:

L =

(
W −aaa>
−aaa diag(aaa) + L−1

)
(4)

Note that W is the weighted degree of vertex 1, and that(
W −aaa>
−aaa diag(aaa)

)
(5)

is the Laplacian of the subgraph of G containing only the edges incident on vertex 1, while L−1 is
the Laplacian of the subgraph of G containing all edges not incident on vertex 1.

Let us also write d =

(
b
c

)
where y ∈ R and c ∈ RV \{1}.
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Now,

E(x ) = −d>x +
1

2
x>Lx = −

(
b
c

)>(
y
z

)
+

1

2

(
y
z

)>(
W −aaa>
−aaa diag(aaa) + L−1

)(
y
z

)
= −by − c>z +

1

2

(
y2W − 2yaaa>z + z> diag(aaa)z + z>L−1z

)
Now, to minimize over y, we set ∂

∂yE(x ) = 0 and get

−b+ yW − aaa>z = 0.

Solving for y, we get that the minimizing y is

y =
1

W
(b+ aaa>z ). (6)

Observe that

E(x ) = −by − c>z +
1

2

(
y2W − 2yaaa>z + z> diag(aaa)z + z>L−1z

)

= −by − c>z +
1

2

 1

W
(yW − aaa>z )2− 1

W
z>aaaaaa>z + z> diag(aaa)z + z>L−1z︸ ︷︷ ︸

Let S=diag(aaa)− 1
W

aaaaaa>+L−1


= −by − c>z +

1

2

(
1

W
(yW − aaa>z )2 + z>Sz

)
,

where we simplified the expression by defining S = diag(aaa) − 1
W aaaaaa> + L−1. Plugging in

y = 1
W (b+ aaa>z ), we get

min
y
E
(
y
z

)
= −

(
c + b

1

W
aaa

)>
z − b2

2W
+

1

2
z>Sz .

Now, we define L′ = S and d ′ = c + b 1
W aaa, and E ′(z ) = −d ′>z + 1

2z>L′z . And, we can see that

arg min
z

min
y
E
(
y
z

)
= arg min

z
E ′(z ),

since dropping the constant term − b2

2W does not change what the minimizing z values are.

Claim 4.1.

1. d ′ ⊥ 1

2. L′ = S = diag(aaa)− 1
W aaaaaa> + L−1 is a Laplacian of a graph on the vertex set V \ {1}.

We will prove Claim 4.1 in the next lecture. From the Claim, we see that the problem of finding
arg minz E ′(z ), is exactly of the same form as finding arg minx E(x ), but with one fewer variables.

We can get a minimizing x that solves arg minx E(x ) by repeating the variable elimination procedure
until we get down to a single variable and finding its value. We then have to work back up to getting
a solution for z , and then substitute that into Equation (6) to get the value for y.

Remark 4.2. In fact, this perspective on Gaussian elimination also makes sense for any positive
definite matrix. In this setting, minimizing over one variable will leave us with another positive
definite quadratic minimization problem.
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