
Advanced Graph Algorithms and Optimization Spring 2020

More Gaussian Elimination, Introduction to RandomMatrix Concentration

Rasmus Kyng Lecture 7 — Wednesday, April 1

1 Gaussian Elimination Recap and Structure Claim

Last time, we studied a convex function minimization problem, and saw how solve it by coordi-
natewise minimizaiton, which I claimed is really Gaussian elimination in disguise. Let’s recap part
of what we saw.

Consider a Laplacian L of a connected graph G = (V,E,w), where w ∈ RE is a vector of positive
edge weights. Let W ∈ RE×E be the diagonal matrix with the edge weights on the diagonal, i.e.
W = diag(w) and L = BWB>. Let d ∈ RV be a demand vector s.t. d ⊥ 1.

We defined an energy

E(x ) = −d>x +
1

2
x>Lx

Note that this function is convex and is minimized at x s.t. Lx = d .

To understand how to minimize over the first variable, we introduce some notation for the first row
and column of the Laplacian:

L =

(
W −aaa>

−aaa diag(aaa) + L−1

)
(1)

Note that W is the weighted degree of vertex 1, and that(
W −aaa>

−aaa diag(aaa)

)
(2)

is the Laplacian of the subgraph of G containing only the edges incident on vertex 1, while L−1 is
the Laplacian of the subgraph of G containing all edges not incident on vertex 1.

Let us also write d =

(
b
c

)
where y ∈ R and c ∈ RV \{1}.

Now,

E(x ) = −d>x +
1

2
x>Lx = −

(
b
c

)>(
y
z

)
+

1

2

(
y
z

)>(
W −aaa>

−aaa diag(aaa) + L−1

)(
y
z

)
Now, to minimize over y, we set ∂

∂yE(x ) = 0 and get

−b+ yW − aaa>z = 0.

Solving for y, we get that the minimizing y is

y =
1

W
(b+ aaa>z ). (3)
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By substituting in this value of y, we found

min
y
E
(
y
z

)
= −

(
c + b

1

W
aaa

)>
z − b2

2W
+

1

2
z>Sz .

where S = diag(aaa)− 1
W aaaaaa>+L−1. We let d ′ = c + b 1

W aaa, and E ′(z ) = −d>z + 1
2z
>Sz , and noted

that

arg min
z

min
y
E
(
y
z

)
= arg min

z
E ′(z ),

and we ended the lecture by stating with the following claim.

Claim 1.1.

1. d ′ ⊥ 1 when d ⊥ 1.

2. S = diag(aaa)− 1
W aaaaaa> + L−1 is a Laplacian of a connected graph on the vertex set V \ {1}.

Now we’re ready to prove it.

Proof. To establish the first part, we note that 1>d ′ = 1>c + b1
>aaa
W = 1>c + b = 1>d = 0. To

establish the second part, we notice that L−1 is a graph Laplacian by definition. Since the sum
of two graph Laplacians is another graph Laplacian, it now suffices to show that S is a graph
Laplacian.

Claim 1.2. A matrix M is a graph Laplacian if and only it satisfies the following conditions:

• M> = M .

• The diagonal entries of M are non-negative, and the off-diagonal entries of M are non-
positive.

• M1 = 0.

Let’s see that Claim 1.2 is true. Firstly, when the conditions hold we can write M = D −A where
D is diagonal and non-negative, and A is non-negative, symmetric, and zero on the diagonal, and
from the last condition D(i, i) =

∑
j 6=iA(i, j). Thus we can view A as a graph adjacency matrix

and D as the corresponding diagonal matrix of weighted degrees. Secondly, it is easy to check that
the conditions hold for any graph Laplacian, so the conditions indeed hold if and only if. Now we
have to check that the claim applies to S . We leave this as an exercise for the reader.

Finally, we want to argue that the graph corresponding to S is connected. Consider any i, j ∈
V \ {1}. Since G, the graph of L, is connected, there exists a simple path in G connecting i and j.
If this path does not use vertex 1, it is a path in the graph of L−1 and hence in the graph of S . If
the path does use vertex 1, it must do so by reaching the vertex on some edge (v, 1) and leaving
on a different edge (1, u). Replace this pair of edges with edge (u, v), which appears in the graph
of S because S(u, v) < 0. Now we have a path in the graph of S .
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2 An Additive View of Gaussian Elimination

Cholesky decomposition basics. Again we consider a graph Laplacian L ∈ Rn×n of a conected
graph G = (V,E,w), where as usual |V | = n and |E| = m.

In this Section, we’ll study how to decompose a graph Laplacian as L = LL>, where L ∈ Rn×n
is a lower triangular matrix, i.e. L(i, j) = 0 for i < j. Such a factorization is called a Cholesky
decomposition. It is essentially the result of Gaussian elimination with slight twist to ensure the
matrices maintained at intermediate steps of the algorithm remain symmetric.

We use nnz(A) to denote the number of non-zero entries of matrix A.

Lemma 2.1. Given an invertible square lower triangular matrix L, we can solve the linear equation
Ly = b in time O(nnz(L)). Similarly, given an upper triangular matrix U , we can solve linear
equations Uz = c in time O(nnz(U)).

We omit the proof, which is a straight-forward exercise. The algorithms for solving linear equations
in upper and lower triangular matrices are known as forward and back substitution respectively.

Remark 2.2. Strictly speaking, the lemma requires us to have access an adjacency list represen-
tation of L so that we can quickly tell where the non-zero entries are.

Using forward and back substitution, if we have a decomposition of an invertible matrix M into
M = LL>, we can now solve linear equations in M in time O(nnz(L)).

Remark 2.3. We have learned about decompositions using a lower triangular matrix, and later
we will see an algorithm for computing these. In fact, we can have more flexibility than that. From
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an algorithmic perspective, it is sufficient that there exists a permutation matrix P s.t. PLP>

is lower triangular. If we know the ordering under which the matrix becomes lower triangular, we
can perform substitution according to that order to solve linear equations in the matrix without
having to explicitly apply a permutation to the matrix.

Dealing with pseudoinverses. But how can we solve a linear equation in L = LL>, where L
is not invertible? For graph Laplacians we have a simple characterization the kernel, and because
of this, dealing with the lack of invertibility turns out to be fairly easy.

We can use the following lemma which you will prove in an exercise next week.

Lemma 2.4. Consider a real symmetric matrix M = XYX>, where X is real and invertible
and Y is real symmetric. Let ΠM denote the orthogonal projection to the image of M . Then
M+ = ΠM (X>)−1Y +X−1ΠM .

The factorizations L = LL> that we produce will have the property that all diagonal entries of L
are strictly non-zero, except that L(n, n) = 0. From let us L̂ as the matrix whose entries agree
with L, except that L̂(n, n) = 1. Let D be the diagonal matrix with D(i, i) = 1 for i < n and
D(n, n) = 0. Then LL> = L̂DL̂, and L̂ is invertible, and D+ = D. Finally, ΠL = I − 1

n11>,
because this matrix is acts like identity on vectors orthogonal to 1 and ensures ΠL1 = 0, and this

matrix can be applied to a vector in O(n) time. Thus L+ = ΠL(L̂
>

)−1DL̂
−1

ΠL, and this matrix
can be applied in time O(nnz(L)).

An additive view of Gaussian Elimination. The following theorem describes Gaussian Elim-
ination / Cholesky decompostion of a graph Laplacian.

Theorem 2.5 (Cholesky Decomposition on graph Laplacians). Let L ∈ Rn×n be a graph Laplacian
of a connected graph G = (V,E,w), where |V | = n. Using Gaussian Elimination, we can compute
in O(n3) time a factorization L = LL> where L is lower triangular, and has positive diagonal
entries except L(n, n) = 0.

Proof. Let L(0) = L. We will use A(:, i) to denote the the ith column of a matrix A. Now, for
i = 1 to i = n− 1 we define

l i =
1√

L(i−1)(i, i)
L(i−1)(:, i) and L(i) = L(i−1) − l il

>
i

Finally, we let ln = 0n×1. We will show later that

L(i−1) = 0n×n. (4)

It follows that L =
∑

i l il
>
i , provided this procedure is well-defined, i.e. L(i−1)(i, i) 6= 0 for all

i < n. We will sketch a proof of this later, while also establishing several other properties of the
procedure.

Given a matrix A ∈ Rn×n and U ⊆ [n], we will use A(U,U) to denote the principal submatrix of
A obtained by restricting to the rows and columns with index in U , i.e. all entries A(i, j) where
i, j ∈ U .
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Claim 2.6. Fix some i < n Let U = {i+ 1, . . . , n}. Then L(i)(i, j) = 0 if i 6∈ U or j 6∈ U . And
L(i)(U,U) is a graph Laplacian of a connected graph on the vertex set U .

From this claim, it follows that L(i−1)(i, i) 6= 0 for i < n−1, since a connected graph Laplacian on a
graph with |U | > 1 vertices cannot have a zero on the diagonal, and it follows that L(n−1)(i, i) = 0,
because the only graph we allow on one vertex is the empty graph. This shows Equation (4)
holds.

Sketch of proof of Claim 2.6. We will focus on the first elimination, as the remaining are similar.
Adopting the same notation as in Equation (1), we write

L(0) = L =

(
W −aaa>

−aaa diag(aaa) + L−1

)
and, noting that

l1l
>
1 =

(
W −aaa>

−aaa 1
W aaaaaa>

)
we see that

L(1) = L(0) − l1l
>
1 =

(
0 0
0 diag(aaa)− 1

W aaaaaa> + L−1

)
.

Thus the first row and column of L(1) are zero claimed. It also follows by Claim 1.1 that
L(1)({2, . . . , n} , {2, . . . , n}) is the Laplacian of a connected graph. This proves Claim 2.6 for the
case i = 1. An induction following the same pattern can be used to prove the claim for all i < n.

3 Matrix Sampling and Approximation

We want to begin understanding how sums of random matrices behave, in particular, whether they
exhibit a tendency to concentrate in the same way that sum of scalar random variables do under
various conditions.

First, let’s recall a scalar Chernoff bound, which shows that a sum of bounded, non-negative random
variables tend to concentrate around their mean.

Theorem 3.1 (A Chernoff Concentration Bound). Suppose X1, . . . , Xk ∈ R are independent, non-
negative, random variables with Xi ≤ R always. Let X =

∑
iXi, and µ = E [X], then for 0 < ε ≤ 1

Pr[X ≥ (1 + ε)µ] ≤ exp

(
−ε2µ
4R

)
and Pr[X ≤ (1− ε)µ] ≤ exp

(
−ε2µ
4R

)
.

The Chernoff bound should be familiar to most of you, but you may not have seen the following
very similar bound. The Bernstein bound, which we will state in terms of zero-mean variables, is
much like the Chernoff bound. It also requires bounded variables. But, when the variables have
small variance, the Bernstein bound is sometimes stronger.

Theorem 3.2 (A Bernstein Concentration Bound). Suppose X1, . . . , Xk ∈ R are independent, zero-
mean, random variables with |Xi| ≤ R always. Let X =

∑
iXi, and σ2 = V ar [X] =

∑
i E
[
X2
i

]
,

then for ε > 0

Pr[|X| ≥ t] ≤ 2 exp

(
−t2

2Rt+ 4σ2

)
.
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We will now prove the Bernstein concentration bound for scalar random variables, as a warm-up
to next lecture, where we will prove a version of it for matrix-valued random variables. To help us
prove Bernstein’s bound, first let’s recall Markov’s inequality. This is a very weak concentration
inequality, but also very versatile, because it requires few assumptions.

Lemma 3.3 (Markov’s Inequality). Suppose X ∈ R is a non-negative random variable, with a
finite expectation. Then for any t > 0,

Pr[X ≥ t] ≤ E [X]

t
.

Proof.

E [X] = Pr[X ≥ t]E [X | X ≥ t] + Pr[X < t]E [X | X < t]

≥ Pr[X ≥ t]E [X | X ≥ t]
≥ Pr[X ≥ t] · t.

We can rearrange this to get the desired statment.

Now, we are ready to prove Bernstein’s bound.

Proof of Theorem 3.2. We will focus on bounding the probability that Pr[X ≥ t]. The proof that
Pr[−X ≥ t] is small proceeds in the same way.

First we observe that

Pr[X ≥ t] = Pr[exp(θX) ≥ exp(θt)] for any θ > 0, because x→ exp(θx) is strictly increasing.

≤ exp(−θt)E [exp(θX)] by Lemma 3.3 (Markov’s Inequality).

Now, let’s require that θ ≤ 1/R This will allow us to using the following bound: For all |z| ≤ 1,

exp(z) ≤ 1 + z + z2. (5)

We omit a proof of this, but the plots in Figure 1 suggest that this upper bound holds. The reader
should consider how to prove this. With this in mind, we see that

E [exp(θX)] = E

[
exp

(
θ
∑
i

Xi

)]
= E [Πi exp(θXi)]

= Πi E [exp (θXi)] because E [Y Z] = E [Y ]E [Z] for independent Y and Z.

= Πi E
[
1 + θXi + (θXi)

2
]

= Πi(1 + θ2 E
[
X2
i

]
)

≤ Πi exp(θ2 E
[
X2
i

]
) because 1 + z ≤ exp(z) for all z ∈ R.

= exp

(∑
i

θ2 E
[
X2
i

])
= exp(θ2σ2).
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Figure 1: Plotting exp(z) compared to 1 + z + z2.

Thus Pr[X ≥ t] ≤ exp(−θt)E [exp(θX)] ≤ exp(−θt+ θ2σ2). Now, to get the best possible bound,
we’d like to minimize −θt+ θ2σ2 subject to the constraint 0 < θ ≤ 1/R. Setting

∂

∂θ

(
−θt+ θ2σ2

)
= −t+ 2θσ2.

Setting this derivative to zero gives θ = t
2σ2 , and plugging that in gives

−θt+ θ2σ2 = − t2

4σ2

This choice only satisfies our constraints on θ if t
2σ2 ≤ 1/R. Otherwise, we let θ = 1/R and note

that in this case

−θt+ θ2σ2 = − t

R
+
σ2

R2
≤ − t

R
+

t

2R
= − t

2R
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where we got the inequality from t > 2σ2/R. Altogether, we can conclude that there always is a
choice of θ s.t.

−θt+ θ2σ2 ≤ −min

(
t

2R
,
t2

4σ2

)
≤ − t2

2Rt+ 4σ2
.

In fact, with the benefit of hindsight, and a little algebra, we arrive at the same conclusion in
another way: One can check that the following choice of θ is always valid and achives the same

bound: θ = 1
2σ2

(
t−

√
R·t3/2√
2σ2+Rt

)
.

We use ‖·‖ to denote the spectral norm on matrices. Let’s take a look at a version of Bernstein’s
bound that applies to sums of random matrices.

Theorem 3.4 (A Bernstein Matrix Concentration Bound (Tropp 2011)). Suppose X 1, . . . ,X k ∈
Rn×n are independent, symmetric matrix-valued random variables. Assume each X i is zero-mean,
i.e. E [X i] = 0n×n, and that ‖X i‖ ≤ R always. Let X =

∑
iX i, and σ2 = V ar [X ] =

∑
i E
[
X 2

i

]
,

then for ε > 0

Pr[‖X ‖ ≥ t] ≤ 2n exp

(
−t2

2Rt+ 4σ2

)
.

This basically says that probability of X being large in spectral norm behaves like the scalar case,
except the bound is larger by a factor n, where the matrices are n × n. We can get a feeling for
why this might be a reasonable bound by considering the case of random diagonal matrices. Now
‖X ‖ = maxj |X (j, j)| = maxj |

∑
iX i(j, j)|. In this case, we need to bound the largest of the n

diagonal entries: We can do this by a union bound over n instances of the scalar problem – and
this also turns out to be essentially tight in some cases, meaning we can’t expect a better bound
in general.
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