Advanced Graph Algorithms and Optimization

Course Introduction

Rasmus Kyng
Problem Set 1 - Wedensday, Feburary 19th

The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all.

Exercise 1.

Let us define the α-sub-level set of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be the set $S_{\alpha} \stackrel{\text { def }}{=}\{\boldsymbol{x}: f(\boldsymbol{x}) \leq \alpha\}$.
(i) Prove that if a function f is convex, then all its sub-level sets are convex sets.
(ii) Is it true that a function whose sub-levels sets are all convex is necessarily convex?

Exercise 2.

Recall the definition of Laplacian $\boldsymbol{L}=\boldsymbol{B} \boldsymbol{R}^{-1} \boldsymbol{B}^{\top}$.
(i) We can also define Laplacian as $\boldsymbol{L} \stackrel{\text { def }}{=} \boldsymbol{D}-\boldsymbol{A}$, where \boldsymbol{A} is the weighted adjacency matrix, i.e. $\boldsymbol{A}(u, v)=1 / \boldsymbol{r}(u, v)$, and $\boldsymbol{D} \stackrel{\text { def }}{=} \operatorname{diag}_{v \in V} \boldsymbol{w}(v)$ for $\boldsymbol{w}(v):=\sum_{(u, v) \in E} 1 / \boldsymbol{r}(u, v)$. Prove that these two definitions are equivalent.
(ii) Given a function on the vertices, $\boldsymbol{x} \in \mathbb{R}^{V}$, the Laplacian quadratic form is

$$
\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}=\sum_{(u, v) \in E} \frac{(\boldsymbol{x}(u)-\boldsymbol{x}(v))^{2}}{\boldsymbol{r}(u, v)} .
$$

Prove the above equality and building on that, show that L is positive semi-definite.
(iii) What is the kernel of \boldsymbol{L}, which is denoted by $\operatorname{Ker}(\boldsymbol{L})$?

Exercise 3.

(i) Prove that for a matrix \boldsymbol{A} we have $\operatorname{im}(\boldsymbol{A})=\operatorname{ker}\left(\boldsymbol{A}^{\top}\right)^{\perp}$, where $\operatorname{im}(\boldsymbol{A})$ denotes the image of \boldsymbol{A} and $\operatorname{ker}\left(\boldsymbol{A}^{\top}\right)^{\perp}$ is the orthogonal complement to $\operatorname{ker}\left(\boldsymbol{A}^{\top}\right)$.
(ii) Building on part (i), prove that in our flow problem, when the graph is connected, an electrical flow \boldsymbol{f} routing \boldsymbol{d} exists if and only if $\mathbf{1}^{\top} \boldsymbol{d}=0$.

Exercise 4.

Define the gradient of a multivariate function $f: S \rightarrow \mathbb{R}$ for $S \subseteq \mathbb{R}^{n}$. Then, prove that the system of linear equations $\boldsymbol{L} \boldsymbol{x}=\boldsymbol{d}$ is the same as the system obtained by setting the gradient with respect to \boldsymbol{x} of the function $c(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}-\boldsymbol{x}^{\top} \boldsymbol{d}$ equal to zero.

Exercise 5.

(i) Recall that the electrical flow and voltages satisfy $\boldsymbol{f}^{*}=\boldsymbol{R}^{-1} \boldsymbol{B}^{\top} \boldsymbol{x}^{*}$ and $\boldsymbol{B} \boldsymbol{f}^{*}=\boldsymbol{d}$. Prove that $\left(\boldsymbol{f}^{*}\right)^{\top} \boldsymbol{R} \boldsymbol{f}^{*}=\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{L} \boldsymbol{x}^{*}$.
(ii) Conclude that

$$
\begin{aligned}
\max _{\boldsymbol{x} \in \mathbb{R}^{V}} \boldsymbol{x}^{\top} \boldsymbol{d}-\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}=\min _{\boldsymbol{f} \in \mathbb{R}^{E}} \frac{1}{2} \sum_{e} \boldsymbol{r}(e) \boldsymbol{f}(e)^{2} \\
\text { s.t. } \boldsymbol{B} \boldsymbol{f}=\boldsymbol{d} .
\end{aligned}
$$

