Advanced Graph Algorithms and Optimization

Spring 2020

Course Introduction

Rasmus Kyng	Problem Set 1 — Wedensday, Feburary 19th
-------------	--

The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all.

Exercise 1.

Let us define the α -sub-level set of a function $f : \mathbb{R}^n \to \mathbb{R}$ to be the set $S_\alpha \stackrel{\text{def}}{=} \{ \boldsymbol{x} : f(\boldsymbol{x}) \leq \alpha \}.$

- (i) Prove that if a function f is convex, then all its sub-level sets are convex sets.
- (ii) Is it true that a function whose sub-levels sets are all convex is necessarily convex?

Exercise 2.

Recall the definition of Laplacian $\boldsymbol{L} = \boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\top}$.

- (i) We can also define Laplacian as $\boldsymbol{L} \stackrel{\text{def}}{=} \boldsymbol{D} \boldsymbol{A}$, where \boldsymbol{A} is the weighted adjacency matrix, i.e. $\boldsymbol{A}(u,v) = 1/\boldsymbol{r}(u,v)$, and $\boldsymbol{D} \stackrel{\text{def}}{=} \operatorname{diag}_{v \in V} \boldsymbol{w}(v)$ for $\boldsymbol{w}(v) := \sum_{(u,v) \in E} 1/\boldsymbol{r}(u,v)$. Prove that these two definitions are equivalent.
- (ii) Given a function on the vertices, $\boldsymbol{x} \in \mathbb{R}^V$, the Laplacian quadratic form is

$$\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x} = \sum_{(u,v)\in E} \frac{(\boldsymbol{x}(u) - \boldsymbol{x}(v))^2}{\boldsymbol{r}(u,v)}.$$

Prove the above equality and building on that, show that L is positive semi-definite.

(iii) What is the kernel of L, which is denoted by Ker(L)?

Exercise 3.

- (i) Prove that for a matrix \boldsymbol{A} we have $\operatorname{im}(\boldsymbol{A}) = \operatorname{ker}(\boldsymbol{A}^{\top})^{\perp}$, where $\operatorname{im}(\boldsymbol{A})$ denotes the image of \boldsymbol{A} and $\operatorname{ker}(\boldsymbol{A}^{\top})^{\perp}$ is the orthogonal complement to $\operatorname{ker}(\boldsymbol{A}^{\top})$.
- (ii) Building on part (i), prove that in our flow problem, when the graph is connected, an electrical flow \boldsymbol{f} routing \boldsymbol{d} exists if and only if $\mathbf{1}^{\top}\boldsymbol{d} = 0$.

Exercise 4.

Define the gradient of a multivariate function $f: S \to \mathbb{R}$ for $S \subseteq \mathbb{R}^n$. Then, prove that the system of linear equations Lx = d is the same as the system obtained by setting the gradient with respect to x of the function $c(x) = \frac{1}{2}x^{\top}Lx - x^{\top}d$ equal to zero.

Exercise 5.

- (i) Recall that the electrical flow and voltages satisfy $f^* = R^{-1}B^{\top}x^*$ and $Bf^* = d$. Prove that $(f^*)^{\top}Rf^* = (x^*)^{\top}Lx^*$.
- (ii) Conclude that

$$\max_{\boldsymbol{x} \in \mathbb{R}^{V}} \boldsymbol{x}^{\top} \boldsymbol{d} - \frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x} = \min_{\boldsymbol{f} \in \mathbb{R}^{E}} \frac{1}{2} \sum_{e} \boldsymbol{r}(e) \boldsymbol{f}(e)^{2}$$
s.t. $\boldsymbol{B} \boldsymbol{f} = \boldsymbol{d}$.