Advanced Graph Algorithms and Optimization

The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all.

Exercise 1.

Recall that the following theorem gives us a sufficient (though not necessary) condition for optimality.

Theorem (Extreme Value Theorem). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and $\mathcal{F} \subseteq \mathbb{R}^{n}$ be nonempty, bounded, and closed. Then, the optimization problem $\min f(\boldsymbol{x}): \boldsymbol{x} \in \mathcal{F}$ has an optimal solution.

Prove the above theorem. You might use the following two theorems.
Theorem (Bolzano-Weierstrass). Every bounded sequence in \mathbb{R}^{n} has a convergent subsequence.
Theorem (Boundedness Theorem). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and $\mathcal{F} \subseteq \mathbb{R}^{n}$ be nonempty, bounded, and closed. Then f is bounded on \mathcal{F}.

Exercise 2.

Prove Taylor's Theorem.
Theorem (Taylor's Theorem, multivariate first-order remainder form). If $f: S \rightarrow \mathbb{R}$ is continuously differentiable over $[\boldsymbol{x}, \boldsymbol{y}]$, then for some $\boldsymbol{z} \in[\boldsymbol{x}, \boldsymbol{y}]$,

$$
f(\boldsymbol{y})=f(\boldsymbol{x})+\boldsymbol{\nabla} f(\boldsymbol{z})^{\top}(\boldsymbol{y}-\boldsymbol{x}) .
$$

Exercise 3.

Let $f_{1}(\boldsymbol{x}), \cdots, f_{k}(\boldsymbol{x})$ be a set of convex functions with the same domain and define

$$
f(\boldsymbol{x}) \stackrel{\text { def }}{=} \max _{1 \leq i \leq k} f_{i}(\boldsymbol{x}) .
$$

Prove that $f(\boldsymbol{x})$ is convex.

Exercise 4.

Assume that $f(x, y)$ is a convex function and S is a convex non-empty set. Prove that

$$
g(x)=\inf _{y \in S} f(x, y)
$$

is convex, provided $g(x)>-\infty$ for all x.

Exercise 5.

Prove that if a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric, then $\|\boldsymbol{A}\|=\max \left(\left|\lambda_{\max }(\boldsymbol{A})\right|,\left|\lambda_{\min }(\boldsymbol{A})\right|\right)$ and give an example of a non-symmetric matrix for which this is not true.

Exercise 6.

For each function below, determine whether it is convex or not.

1. $f(x)=|x|^{6}$ on $x \in \mathbb{R}$
2. $f(x)=\exp (x)$ on $x \in(0, \infty)$
3. $f(x, y)=\sqrt{x+y}$ on $(x, y) \in(0,1) \times(0,1)$
4. $f(x, y)=x y$ on $(x, y) \in(-1,1) \times(-1,1)$
