Advanced Graph Algorithms and OptimizationSpring 2020Convexity and Second Derivatives, Gradient Descent and AccelerationRasmus KyngProblem Set 3 — Wednesday, March 4

The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all.

Exercise 1.

Consider a twice differentiable function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}^n$ is a convex open set. Prove that f is β -gradient Lipschitz if and only if for all $\boldsymbol{x} \in S$ (except a measure zero set), $\|\lambda_{\max}(\boldsymbol{H}_f(\boldsymbol{x}))\| \leq \beta$.

Exercise 2.

Prove that when running Gradient Descent, $\|\boldsymbol{x}_i - \boldsymbol{x}^*\|_2 \le \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|_2$ for all *i*.

Exercise 3.

Prove the following theorem.

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be an β -gradient Lipschitz, convex function. Let \boldsymbol{x}_0 be a given starting point, and let $\boldsymbol{x}^* \in \arg\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$ be a minimizer of f. The Gradient Descent algorithm given by

$$oldsymbol{x}_{i+1} = oldsymbol{x}_i - rac{1}{eta} oldsymbol{
abla} f(oldsymbol{x}_i)$$

ensures that the kth iterate satisfies

$$f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*) \le \frac{2\beta \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|_2^2}{k+1}.$$

Hint: do an induction on $1/gap_i$.

Exercise 4.

- 1. For each of the following functions answer these questions:
 - Is the function convex?
 - Is the function β -gradient Lipschitz for some β ?
 - If the function is β -gradient Lipschitz give an upper bound on β the bound should be within a factor 4 of the true value.

(a)
$$f(x) = |x|^{1.5}$$
 on $x \in \mathbb{R}$

- (b) $f(x) = \exp(x)$ on $x \in \mathbb{R}$
- (c) $f(x) = \exp(x)$ on $x \in (-1, 1)$
- (d) $f(x,y) = \sqrt{x+y}$ on $(x,y) \in (0,1) \times (0,1)$.
- (e) $f(x,y) = \sqrt{x+y}$ on $(x,y) \in (1/2,1) \times (1/2,1)$.
- (f) $f(x,y) = \sqrt{x^2 + y^2}$ on $(x,y) \in \mathbb{R}^2$.