The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all.

Exercise 1.

Consider a twice differentiable function $f: S \rightarrow \mathbb{R}$, where $S \subset \mathbb{R}^{n}$ is a convex open set. Prove that f is β-gradient Lipschitz if and only if for all $\boldsymbol{x} \in S$ (except a measure zero set), $\left\|\lambda_{\max }\left(\boldsymbol{H}_{f}(\boldsymbol{x})\right)\right\| \leq \beta$.

Exercise 2.

Prove that when running Gradient Descent, $\left\|\boldsymbol{x}_{i}-\boldsymbol{x}^{*}\right\|_{2} \leq\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}$ for all i.

Exercise 3.

Prove the following theorem.
Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an β-gradient Lipschitz, convex function. Let \boldsymbol{x}_{0} be a given starting point, and let $\boldsymbol{x}^{*} \in \arg \min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})$ be a minimizer of f. The Gradient Descent algorithm given by

$$
\boldsymbol{x}_{i+1}=\boldsymbol{x}_{i}-\frac{1}{\beta} \boldsymbol{\nabla} f\left(\boldsymbol{x}_{i}\right)
$$

ensures that the k th iterate satisfies

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{2 \beta\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}}{k+1}
$$

Hint: do an induction on $1 / g a p_{i}$.

Exercise 4.

1. For each of the following functions answer these questions:

- Is the function convex?
- Is the function β-gradient Lipschitz for some β ?
- If the function is β-gradient Lipschitz give an upper bound on β - the bound should be within a factor 4 of the true value.
(a) $f(x)=|x|^{1.5}$ on $x \in \mathbb{R}$
(b) $f(x)=\exp (x)$ on $x \in \mathbb{R}$
(c) $f(x)=\exp (x)$ on $x \in(-1,1)$
(d) $f(x, y)=\sqrt{x+y}$ on $(x, y) \in(0,1) \times(0,1)$.
(e) $f(x, y)=\sqrt{x+y}$ on $(x, y) \in(1 / 2,1) \times(1 / 2,1)$.
(f) $f(x, y)=\sqrt{x^{2}+y^{2}}$ on $(x, y) \in \mathbb{R}^{2}$.

