
Advanced Graph Algorithms and Optimization Spring 2020

Convexity and Second Derivatives, Gradient Descent and Acceleration

Rasmus Kyng Problem Set 3 — Wednesday, March 4

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all.

Exercise 1.

Consider a twice differentiable function f : S → R, where S ⊂ Rn is a convex open set. Prove that f
is β-gradient Lipschitz if and only if for all x ∈ S (except a measure zero set), ‖λmax(Hf (x ))‖ ≤ β.

Exercise 2.

Prove that when running Gradient Descent, ‖x i − x ∗‖2 ≤ ‖x 0 − x ∗‖2 for all i.

Exercise 3.

Prove the following theorem.

Theorem. Let f : Rn → R be an β-gradient Lipschitz, convex function. Let x 0 be a given starting
point, and let x ∗ ∈ arg minx∈Rn f(x ) be a minimizer of f . The Gradient Descent algorithm given
by

x i+1 = x i −
1

β
∇f(x i)

ensures that the kth iterate satisfies

f(x k)− f(x ∗) ≤
2β ‖x 0 − x ∗‖22

k + 1
.

Hint: do an induction on 1/gapi.

Exercise 4.

1. For each of the following functions answer these questions:

• Is the function convex?

• Is the function β-gradient Lipschitz for some β?

• If the function is β-gradient Lipschitz give an upper bound on β – the bound should be
within a factor 4 of the true value.

(a) f(x) = |x|1.5 on x ∈ R
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(b) f(x) = exp(x) on x ∈ R
(c) f(x) = exp(x) on x ∈ (−1, 1)

(d) f(x, y) =
√
x+ y on (x, y) ∈ (0, 1)× (0, 1).

(e) f(x, y) =
√
x+ y on (x, y) ∈ (1/2, 1)× (1/2, 1).

(f) f(x, y) =
√
x2 + y2 on (x, y) ∈ R2.
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