Advanced Graph Algorithms and Optimization

Introduction to Spectral Graph Theory

Rasmus Kyng
Problem Set 4 - Wednesday, March 11

The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all.

Exercise 1.

Prove that

1. $\boldsymbol{v}_{0}=\boldsymbol{x}_{0}-\frac{a_{0}}{\sigma} \boldsymbol{\nabla} f\left(\boldsymbol{x}_{0}\right)$
2. $L_{0}=f\left(\boldsymbol{x}_{0}\right)-\frac{a_{0}}{2 \sigma}\left\|\nabla f\left(\boldsymbol{x}_{0}\right)\right\|_{2}^{2}-\frac{\sigma}{2 a_{0}}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|_{2}^{2}$.

Exercise 2.

Prove that

1. $m_{i}(\boldsymbol{v})=m_{i}\left(\boldsymbol{v}_{i}\right)+\frac{\sigma}{2}\left\|\boldsymbol{v}-\boldsymbol{v}_{i}\right\|_{2}^{2}$
2. $m_{i+1}(\boldsymbol{v})=m_{i}(\boldsymbol{v})+a_{i+1} f\left(\boldsymbol{x}_{i+1}\right)+\left\langle a_{i+1} \boldsymbol{\nabla} f\left(\boldsymbol{x}_{i+1}\right), \boldsymbol{v}-\boldsymbol{x}_{i+1}\right\rangle$
3. $\boldsymbol{v}_{i+1}=\boldsymbol{v}_{i}-\frac{a_{0}}{\sigma} \boldsymbol{\nabla} f\left(\boldsymbol{x}_{0}\right)$.

Exercise 3.

1. Assume that $S \subseteq \mathbb{R}^{n}$ is a convex set and that the function $f: S \rightarrow \mathbb{R}$ is convex. Suppose that $\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{n} \in S$ and $\theta_{1}, \cdots, \theta_{n} \geq 0$ with $\theta_{1}+\cdots+\theta_{n}=1$. Prove that

$$
f\left(\theta_{1} \boldsymbol{x}_{1}+\cdots+\theta_{n} \boldsymbol{x}_{n}\right) \leq \theta_{1} f\left(\boldsymbol{x}_{1}\right)+\cdots+\theta_{n} f\left(\boldsymbol{x}_{n}\right) .
$$

Remark. This is typically known as Jensen's inequality and can be extended to infinite sums. If \mathcal{D} is a probability distribution on S, and $\boldsymbol{X} \sim \mathcal{D}$, then

$$
f(\mathbb{E}[\boldsymbol{X}]) \leq \mathbb{E}[f(\boldsymbol{X})]
$$

whenever both integrals are finite.
2. Prove that

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i} .
$$

3. Prove that

$$
\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}} \leq\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}
$$

