
Advanced Graph Algorithms and Optimization Spring 2020

Spectral Graph Theory II

Rasmus Kyng Problem Set 6 — Wednesday, April 22

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. The solution is due on Sunday, April 26 by 12:00 noon.

Throughout these exercises, we will use the following notation:

• Sn is the set of symmetric real matrices n× n matrices.

• Sn+ is the set of positive semi-definite n× n matrices.

• Sn++ is the set of positive definite n× n matrices.

Whenever we say a matrix is positive semi-definite or positive definite, we require it to be real and
symmetric.

Exercise 1.

In this exercise, you will prove the following lemma from Lecture 9. We restate it here:

Lemma. Given a matrix M ∈ Sn++, a vector d ∈ Rn and a decomposition M ≈κ LL>, we can
find x̃ that ε-approximately solves M x = d , using O((1 + K) log(K/ε)(Tmatvec + Tsol + n)) time,
where

• Tmatvec denotes the time required to compute M z given a vector z , i.e. a “matrix-vector
multiplication”.

• Tsol denotes the time required to compute L−1z or (L>)−1z given a vector z .

The lemma uses our definition of ε-approximate solution, we will also restate:

Definition (ε-approximate solution to M x = d .). Given PSD matrix M and d ∈ ker(M )⊥, let
M x ∗ = d . We say that x̃ is an ε-approximate solution to the linear equation M x = d if

‖x̃ − x ∗‖2M ≤ ε ‖x
∗‖2M .

You may assume the following theorem, which you proved in Problem 2 of Graded Homework 1.

Theorem (Accelerated Gradient Descent for Solving PD Linear Equations). Suppose we are given
matrix a A ∈ Sn++ and a vector b ∈ Rn, and l and u s.t.

l ≤ λmin(A) and λmax(A) ≤ u.

Let κ = u
l . We can find x̃ that ε-approximately solves Ax = b, in time O(

√
κ log(κ/ε)(Tmatvec+n))

where Tmatvec denotes the time required to compute Az given a vector z , i.e. a “matrix-vector
multiplication”.
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Here are some intermediate steps that might be helpful for proving the lemma:

1. Show that for all x ,
1

1 +K
≤ x>M x

x>LL>x
≤ 1 +K

2. Show that for all y ,
1

1 +K
≤ y>L−1M (L>)−1y

y>y
≤ 1 +K

3. It might be a good idea to approximately solve a linear equation in L−1M (L>)−1? You’ll
have to figure out the right way to convert both a linear equation and a solution.

Exercise 2.

1. Consider A ∈ Sn++ and matrix ∆ ∈ Sn+. Prove that (A + ∆)−1 � A−1.

2. Let T be a convex set. We say that a function f : T → Rn×n, is operator convex if for any
two matrices A,B ∈ T and any θ ∈ [0, 1]

f (θX + (1− θ) Y ) � θf (X ) + (1− θ) f (Y ) .

Prove that f(X ) = X−1 is operator convex over the set T = Sn++.

Hint: You could first show that operator convexity is implied by the second directional deriva-
tive D2f(X )[Y ,Y ] being positive semi-definite for all Y ∈ Sn and X ∈ Sn++.

Exercise 3.

1. Let f(X ) = X 2 for X ∈ Sn. Prove that f is midpoint operator convex, that is, for any
X ,Y ∈ Sn we have

f

(
1

2
X +

1

2
Y

)
� 1

2
f (X ) +

1

2
f (Y ) .

Remark. You’re not asked to prove anything beyond midpoint operator convexity, but under
very mild conditions midpoint convexity implies general convexity, and midpoint operator
convexity implies operator convexity. This is also true in this case: f is in fact operator
convex.
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