
Advanced Graph Algorithms and Optimization Spring 2020

Classical Algorithms for Maximum Flow

Rasmus Kyng Problem Set 7 — Wednesday, April 29

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. The solution is due on Monday, May 4 by 12:00 noon.

In Exercises 1 and 2, we’ll explore algorithms finding a maximum flow on a directed graph with
edge capacities.

Consider directed graph G = (V,E, c) with arbitrary capacities c ≥ 0.

Let B ∈ RE×V be the edge vertex incidence matrix of the graph, i.e. if e ∈ E and (u, v) = e then
B(e, u) = 1 and B(e, v) = −1.

We let χv ∈ RV denote the indicator of vertex v, i.e. χv(v) = 1 and χv(u) = 0 for u 6= v.

We let s ∈ V denote the flow “source” and t ∈ V the flow “sink”.

The maximum flow problem is given by

max
f ∈RE ,F≥0

F

s.t. Bf = F (−χs + χt)

0 ≤ f ≤ c

In the context of a given maximum flow problem, for a flow f satisfying Bf = F (−χs + χt), we
define val(f ) = F .

Let f ∗ denote a feasible flow maximizing F , so that the maximum attainable flow value F is val(f ∗).

Exercise 1: Convergence of Ford-Fulkerson

Show that the Ford-Fulkerson algorithm may not terminate; moreover, it may converge a value not
equal to the value of the maximum flow.

Hint: You might use the graph below with the given capacities, where r =
√
5−1
2 (which implies that

r2 = 1− r).

s

t

100

100

100 1001
1

100 r

100

1



Exercise 2: Iterative Refinement for Maximum Flow

Suppose we have an algorithm FlowRefine, which given a maximum flow instance G = (V,E, c)
with source s ∈ V and sink t ∈ V returns a feasible s-t flow f̃ , i.e. Bf̃ = F (−χs + χt) for
some F , and 0 ≤ f̃ ≤ c, and f̃ is guaranteed to route at least half the maximum flow, i.e.
F = val(f̃ ) ≥ 0.5 val(f ∗).

Suppose that the running time of FlowRefine is O(|E|c) for some constant c ≥ 1.

Explain how we can use FlowRefine to find a flow f̂ that routes at least (1− ε) val(f ∗) in time
O(|E|c log(1/ε)).

Exercise 3: A Scalar Martingale Theorem

The following is a concentration theorem for scalar martingales, that can be quite useful when the
“pseudo-variance” of the martingale (see below) is easy to bound. This often turns out to be the
case.

Theorem. Suppose the random variables X1, X2, . . . , Xk ∈ R form a scalar martingale difference
sequence, i.e.

E [Xi | X1, . . . , Xi−1] = 0

Suppose also that |Xi| ≤ 1 always. Define the “pseudo-variance”

Wi =
i∑

j=1

E
[
X2

j | X1, . . . , Xj−1
]

Then

Pr

[∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ t and Wk ≤ σ2
]
≤ C2 exp

(
−C1

t2

Rt+ σ2

)

The exercise is to prove this theorem for some fixed constants C1 and C2, e.g. C1 = 1/10 and
C2 = 100 or other constants you can make work. They should not depend on R or σ2 or t.

Hint: you may find it useful to evaluate the mean-exponential E [exp(aX − bW )] for some param-
eters a and b.

Remark. Note that Wi is a random variable! But it is fixed, i.e. not random, conditional
on X1, . . . , Xi−1. When we use this theorem, it has to be the case that we know something
about the martingale that helps us show the probability Pr[Wk > σ2] is small. Then to bound

Pr
[∣∣∣∑k

i=1Xi

∣∣∣ ≥ t], we use a union bound:

Pr

[∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ t
]
≤ Pr

[∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ t and Wk ≤ σ2
]

+ Pr[Wk > σ2].

The above theorem is used to bound the first term, while we need some other way to bound the
second term.
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